1. "Multiscale simulations of charge and size separation of nanoparticles with a solid-state nanoporous membrane", C. Wells, D. Melnikov, , J. Cirillo, M. Gracheva, Phys. Rev. E 102, 063104 (2020).
  2. Cover (Journal Cover) "Concentration Polarization, Surface Charge, and Ionic Current Blockade in Nanopores", D. Melnikov, Z. Hulings, M. Gracheva, J. Phys. Chem. C, 124, 36, 19802–19808 (2020).
  3. "Atomistic model of a ceria nanoparticle with Ce3+ and Ce4+ atoms", A. Sinitsyn, M. Gracheva, Nanotechnology 31, 315708 (2020).
  4. "Brownian dynamics of a neutral protein moving through a nanopore in an electrically biased membrane", C. Wells, D. Melnikov, M. Gracheva, J. Chem. Phys. 150(11), p.115103 (2019).
  5. "Brownian dynamics simulations of the ionic current traces for a neutral nanoparticle translocating through a nanopore", Zachery Hulings, D. Melnikov, M. Gracheva, Nanotechnology 29(44), p.445204 (2018).
  6. "Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore", C. Wells, D. Melnikov, M. Gracheva, J. Chem. Phys. 147(5), p.054903 (2017).
  7. "Electro-osmotic flow through nanopores in thin and ultrathin membranes", Zachery Hulings, D. Melnikov, M. Gracheva, Phys. Rev. E 95(6), p. 063105(1-8) (2017).
  8. "Protein permeation through an electrically tunable membrane", I. Jou, D. Melnikov, M. Gracheva, Nanotechnology 27(20), p.205201 (2016).
  9. "Nanopore gating with an anchored polymer in a switching electrolyte bias", C. Wells, I. Jou, D. Melnikov, M. Gracheva, J. Chem. Phys. 144(10), p.104901 (2016).
  10. "Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces", Zachery Hulings, D. Melnikov, M. Gracheva, Phys. Rev. E 91(6), p. 062713(1-7) (2015).
  11. "Pores with Longitudinal Irregularities Distinguish Objects by Shape", Yinghua Qiu, Preston Hinkle, Crystal Yang, Henriette E. Bakker, Hong Wang, Matthew Schiel, Dmitriy Melnikov, Maria Gracheva, Maria Eugenia Toimil-Molares, Arnout Imhof, Zuzanna S. Siwy, ACS Nano 9 (4), p. 4390-4397 (2015).
  12. (Invited Paper) "Poisson-Nernst-Planck model for an ionic transistor based on a semiconductor membrane", A. Nikolaev, M. Gracheva, Journal of Computational Electronics (Special Issue) 13(4), p. 818-825 (2014).
  13. "Charged particle separation by electrically tunable nanoporous membrane", Ining A. Jou, D. Melnikov, A. Nadtochiy, M.E. Gracheva, Nanotechnology 25 (14), p. 14521(1-9) (2014).
  14. "Filtering of nanoparticles with tunable semiconductor membranes", A. Nadtochiy, D. Melnikov, M.E. Gracheva, ACS Nano 7 (8), p. 7053-7061 (2013).
  15. "DNA translocation through a nanopore in a single-layered doped semiconductor membrane", I. Jou, D. Melnikov, C. McKinney, M.E. Gracheva, Physical Review E 86, p. 061906 (2012).
  16. "Slowing down and stretching out DNA with an electrically tunable nanopore in a p-n semiconductor membrane", D. Melnikov, J.-P. Leburton, M.E. Gracheva, Nanotechnology 23, p. 25501 (2012).
  17. "Simulation of ionic current through the nanopore in a double-layered semiconductor membrane", A. Nikolaev, M. Gracheva, Nanotechnology 22(16), p. 165202 (2011).
  18. "Polymer translocation through an electrically tunable nanopore in a multilayered semiconductor membrane", D. Melnikov, A. Nikolaev, J.-P. Leburton, M.E. Gracheva, Book Chapter in "Nanopore-based technology: single molecule characterization and DNA sequencing", edited by M.E. Gracheva, p. 187-210, Humana Press (2012), ISBN 978-1-61779-772-9, DOI 10.1007/978-1-61779-773-6. (Methods Mol Biol; 2012;870:187-207).
  19. "Simulation of electronic sensing of biomolecules in translocation through a nanopore in a semiconductor membrane", M.E. Gracheva, A. Leroux, J. Destine, J.-P. Leburton, Book Chapter in "Nanopores: sensing and fundamental biological interactions", edited by S.M. Iqbal and R. Bashir, p. - , Springer 2010.
  20. "SPICE-circuit simulation of the electrical response of semiconductor membrane to a single-stranded DNA translocating through a nanopore", A. Leroux, J. Destine, B. Vanderheyden, M.E. Gracheva, J.-P. Leburton, IEEE Transactions on Nanotechnology 9(3), p. 322-329 (2010).
  21. "A model of fibroblast motility on substrates with different rigidities", I. Dokukina, M. Gracheva, Biophysical Journal 98(12), p. 2794-2803 (2010).
  22. "Multilayered semiconductor membranes for nanopore ionic conductance modulation", M.E. Gracheva, D.V. Melnikov and J.-P. Leburton, ACS Nano 2(11), p. 2349-2355 (2008).
  23. "Simulation of electrically tunable semiconductor nanopores for ion current/single bio-molecule manipulation", M.E. Gracheva, J.-P. Leburton, J. Comput. Electronics 7(1), p. 6-9 (2008).
  24. "P-n semiconductor membrane for electrically tunable ion current rectification and filtering", M.E. Gracheva, J. Vidal and J.-P. Leburton, NanoLetters 7(6), p. 1717-1722 (2007).
    (This article was featured in: www.physorg.com, www.nsf.gov, IOP, Beckman Institute, NCSA, Electrical and computer engineering Department of UIUC and around the world)
  25. "Role of network connectivity in intercellular calcium signaling", I.V. Dokukina, M.E. Gracheva, E.A. Grachev and J.D. Gunton, Physica D 237, p. 745-754 (2008).
  26. "The influence of the tissue structure on intercellular calcium signaling", I.V. Dokukina, A.A. Tsukanov, M.E. Gracheva and E.A. Grachev, Biophyzika, 53(2), p. 305-314 (2008) (in Russian).
  27. "Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane", M.E. Gracheva and J.-P. Leburton, Nanotechnology 18, p. 145704-145710 (2007).
  28. "Electrically Tunable Solid-State Silicon Nanopore Ion Filter", J. Vidal, M.E. Gracheva and J.-P. Leburton, Nanoscale Research Letters 2, p. 61-68 (2007).
  29. Cover (Journal Cover) "Electrical Signatures of Single-Stranded DNA with Single Base Mutations in a Nanopore Capacitor", M.E. Gracheva, A. Aksimentiev and J.-P. Leburton, Nanotechnology 17(13), p. 3160-3165 (2006).
  30. "Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor", M.E. Gracheva, A. Xiong, A. Aksimentiev, K. Schulten, G. Timp and J.-P. Leburton, Nanotechnology 17(3), p. 622-633 (2006).
    (Highly accessed paper - top 10% of Institute of Physics (IOP) Publishing)
  31. "Modulation of mitochondrial calcium dynamics by cytosolic buffer proteins and cellular plasma membrane fluxes", I.V. Dokukina, M.E. Gracheva, E.A. Grachev, Moscow State University Physics Bulletin (Vestnik Moskovskogo Universiteta, Fizika) 2, p. 23-26 (2007).
  32. "A finite-size scaling study of a model of globular proteins", D. Pagan, M.E. Gracheva, J.D. Gunton, J. of Chemical Physics 120(17) p. 8292-8298 (2004).
  33. "A continuum model of motility in amoeboid cells", M.E. Gracheva and H.G. Othmer, Bulletin of Mathematical Biology 66, p. 167-193 (2004).
  34. "The role of noise in some physical and biological systems", J.D. Gunton, R. Toral, C. Mirasso, M.E. Gracheva, in book "Recent Research Developments in Applied Physics", eds. M. Kawasaki, N. Ashgriz, R. Anthony (2003). [pdf]
  35. "Intercellular communication via intracellular calcium oscillations", M.E. Gracheva and J.D. Gunton, J. of Theor. Biology 221(4), pp. 513-518 (2003).
  36. "Stochastic simulation of intercellular calcium spiking in hepatocytes", M.E. Gracheva, R. Toral and J.D. Gunton, J. Theor. Biology 212, p. 111-125 (2001).
  37. "Coarse-grained Ginzburg-Landau free energy for Lennard-Jones systems",M.E. Gracheva, J.M. Rickman and J.D. Gunton, J. Chem. Phys. 113(9), p. 3525-3529 (2000).
  38. "Phase transitions in a two-dimensional vortex system with defects: Monte Carlo simulation", V.A. Kashurnikov, I.A. Rudnev, M.E. Gracheva, O.A. Nikitenko, Journal of Experimental and Theoretical Physics 117, p. 196 (2000).
  39. "Phase transitions in a two-dimensional vortex lattice with defects: Monte Carlo simulation", I.A. Rudnev, V.A. Kashurnikov, M.E. Gracheva, O.A. Nikitenko, Physica C 332, p. 383 (2000).
  40. "Vortex lattice melting in layered HTSC in the field of defects", M.E. Gracheva, V.A. Kashurnikov, I.A. Rudnev, O.A. Nikitenko, Low Temperature Physics 25(10), p.765 (1999).
  41. "Dynamics of vortex lattice in the current state in high-temperature superconductors: Monte Carlo method", M.E. Gracheva, V.A. Kashurnikov, I.A. Rudnev, Low Temperature Physics 25(2), p.105 (1999).
  42. "Phase diagram of layered HTSC: simulation by means of Monte Carlo method", M.E. Gracheva, V.A. Kashurnikov, I.A. Rudnev, Physics of low-dimensional structures 9/10, 202-208 (1998).
  43. "Monte Carlo simulation of phase transitions in the vortex system of high-temperature superconductors", M.E. Gracheva, M.V. Katargin, V.A. Kashurnikov, I.A. Rudnev, Low Temperature Physics 23(11), p.863 (1997).
  44. "Features of the melting dynamics of a vortex lattice in a high-Tc superconductor in the presence of pinning centers", M.E. Gracheva, V.A. Kashurnikov, I.A. Rudnev, JETP Letters 66, p.269-274, (1997).
  45. "Monte-Carlo simulation of the two-dimensional vortex lattice melting in high-temperature superconductors with defects", M.E. Gracheva, V.A. Kashurnikov, I.A. Rudnev, Physics of low-dimensional structures 8/9, 125-134 (1997).

© Maria Gracheva, 2010