MA 180 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

7.4) Some Rules of Differentiation

In this section we will learn important rules that will help us arrive at the derivative of a function easily. We will use these rules over the limit definition of the derivative.

 $\frac{d}{dx}[\pi] =$

The Constant Rule

The derivative of a constant function is zero. That is:

 $\frac{d}{dx}[c] = 0$, where c is a constant.

Explain why this is true using the algebraic definition and by interpreting the graph.

Examples:

Find $\frac{d}{dx}[9] =$

The (Simple) Power Rule

 $\frac{d}{dx}[x^n] = nx^{n-1}$, *n* is any real number

Examples:

$$\frac{d}{dx}[x^{7}] = 7x^{6} \qquad \qquad \frac{d}{dx}[\sqrt{x}] = \frac{d}{dx}[x^{\frac{1}{2}}] = \frac{1}{2}x^{-\frac{1}{2}} \qquad \qquad \frac{d}{dx}[\frac{1}{x^{3}}] = \frac{d}{dx}[x^{-3}] = -3x^{-4}$$

Note in the last two examples that we do not drop the derivative operator when we simplify. It gets dropped only after we find the derivative.

Find the following derivatives.

$\frac{d}{dx} \left[x^{10} \right] =$	$\frac{d}{dx} \left[x^4 \right] =$
$\frac{d}{dx} \left[\sqrt[3]{x} \right] =$	$\frac{d}{dx} \left[\frac{1}{x^5} \right] =$

Remember the derivative is a *function* that tells you the slope of the tangent line for any x in the domain of the original function.

Example:

Find the slope of the tangent line to the graph of $f(x) = x^3$ when x = -2, -1, 0, 2. Consider the graph and interpret your results.

The Constant Multiple Rule

If *f* is a differentiable function of *x* and *c* is a real number, then $\frac{d}{dx}[cf(x)] = cf'(x)$, *c* is a constant.

In other words, if a function is multiplied by a constant, you find the derivative of the function and multiply the constant (carry the constant.)

Verify this using the definition of the derivative.

Examples:

Find the derivatives.

$\frac{d}{dx} \left[5x^7 \right] =$	$\frac{d}{dx}\left[\frac{x}{3}\right] =$
$\frac{d}{dx} \left[10\sqrt{x} \right] =$	$\frac{d}{dx} \left[\frac{-3}{x^8} \right] =$
$\frac{d}{dx} \Big[4\pi x \Big] =$	$\frac{d}{dx} \left[5\sqrt[2]{x^3} \right] =$

Exercise: Be mindful of parenthesis when differentiating.

Find the derivative of the following functions.

$$y = \frac{3}{4x^2}$$

$$y = \frac{3}{(4x)^2}$$

$$y = \frac{3}{4x^{-2}}$$

$$y = \frac{3}{(4x)^{-2}}$$

The next rule involves the addition or subtraction of two functions. We find that the derivative of the sum is the sum of the derivatives.

The Sum and Difference Rules

The derivatives of the sum or difference of two differentiable functions is the sum or difference of their derivatives.

Sum Rule $\frac{d}{dx} [f(x) + g(x)] = f'(x) + g'(x)$

Difference Rule

 $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$

We can verify this using the definition of the derivative.

Examples: Find the derivatives.

$$\frac{d}{dx} \left[6x^3 - 5x + 8 \right] =$$

$$\frac{d}{dx} \left[\frac{3x^4 - 2}{x} \right] =$$

Find the slope of the graph of $f(x) = 5x^3 - 4x + 7$ at the point (2,39).

Find the equation of the tangent line to the graph of $f(x) = 5x + \sqrt{x}$ at the point (4,22).

Determine the point(s), if any, at which the graph of the function has a horizontal tangent line.

 $y = -x^4 + 3x^2 - 1$