MA 180 Lecture Chapter 0 College Algebra and Calculus by Larson/Hodgkins Fundamental Concepts of Algebra

0.3) Integer Exponents

Let *a* be a real number, a variable, or an algebraic expression, and let *n* be a positive integer. Then $a^n = a \cdot a \cdot a \cdot ... \cdot a$ where the right hand side is the multiplication of *a* a total of *n* times. We say *n* is the **exponent** and *a* is the **base**.

The expression a^n is read as "*a* to the n^{th} **power**" or simply "*a* to the n^{th} ." **Properties of Exponents**

Let a and b be real numbers, variables, or algebraic expressions, and let m and n be integers. (Assume all denominators and bases are nonzero.)

Property	Example	Description
1.) $a^m a^n = a^{m+n}$	$3^2 3^5 =$	Product of Powers
2.) $\frac{a^m}{a^n} = a^{m-n}$	$\frac{4^7}{4^5} =$	Quotient of Powers
3.) $(ab)^m = a^m b^m$	$(2x)^3 =$	Power of a Product
$4.) \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{3}{5}\right)^2 =$	Power of a Quotient
5.) $(a^m)^n = a^{mn}$	$(7^4)^5 =$	Power of a Power
6.) $a^{-m} = \frac{1}{a^m}$	$6^{-3} =$	Definition of negative exponent
7.) $a^0 = 1, a \neq 0$	$978^{\circ} =$	Definition of zero exponent
8.) $\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$	$\left(\frac{2}{3}\right)^{-2} =$	
9.) $ a^2 = a ^2 = a^2$	6 ² =	

Please Note

There is a difference between $-2x^4$ and $(-2x)^4$. In the first example only the variable part is being raised to a power. In the second example, everything inside the parenthesis is being raised to the power. So the second is equivalent to $(-2x)^4 = (-1)^4 (2)^4 (x)^4 = +16x^4$.

Exercise:

Evaluate the expression. Write fractional answers in simplest form. Use only positive exponents when expressing exponents.

1)
$$2^{5}2^{-3} =$$

2) $-5^{2} =$
3) $(-5)^{2} =$
4) $\left(\frac{1}{2}\right)^{-3} =$
6) $\left(-\frac{3}{5}\right)^{3} \left(\frac{5}{3}\right)^{2} =$
7) $8x^{0} - (8x)^{0} =$
8) $(6y^{2})(2y^{3})^{3} =$
9) $\frac{35y^{10}}{7y^{5}} =$
10) $24 \cdot \frac{(x-7)^{3}}{8(x-7)} =$
11) $\frac{x^{n} \cdot x^{2n}}{x^{3n}} =$
12) $4^{n} \cdot 2^{2n} =$
13) $(y+2)^{-3}(y+2)^{-1} =$
14) $(-2x^{2})^{3}(4x^{3})^{-1} =$
15) $\frac{x^{3}y^{-2}z}{x^{4}y^{3}z^{-0}} =$

Scientific Notation:

Scientific Notation has the form $c \times 10^n$, where $1 \le c < 10$ and *n* is an integer. The *positive* exponent *n* indicates the number is large and that the decimal point has been moved *n* places. A *negative* exponent in scientific notation indicates that the number is *small* (less than one) and has *n* spaces between decimal places.

Examples:

 $0.00000365 = 3.65 \times 10^{-6}$

 $109,000,000 = 1.09 \times 10^8$

Applications:

The balance A in an account that earns an annual interest rate r (in decimal form) for t years is given by one of the following:

A = P(1 + rt) Simple Interest

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$
 Compound Interest

In both formulas, *P* is the principal (or the initial deposit.) In the formula for compound interest, *n* is the number of compounding *per year*. Make sure you convert all units of time *t* to years. For instance, six

months is one half year, so $t = \frac{1}{2}$.

Exercises:

You want to invest \$1000 for four years. Which savings plan will earn more money? A.) 5% simple annual interest or B.) 4.5% interest compounded quarterly