## Calculus ABC Test II—Version 2617

Name:

Student Number:

Lecture section: \_

PUT ANSWERS IN BOXES. NO BOOKS/NOTES/CALCULATORS. DO YOUR OWN WORK. Simplify answers where possible. Include units where needed. All angles are in radians.  $\log = \log_{10}$ .

1. Find the equation of the line with x-intercept 2 and y-intercept -3 in point-slope form. (0,3), (2,0)  $m = \frac{-3-0}{0-2} = \frac{-3}{2} = +\frac{3}{2}$ 



**2.** Find the value of:

$$\arcsin(-1)$$



**3.** Solve for x:

$$\sqrt{x} - 5 = 7$$

$$\sqrt{x} = 12$$

X= 144

4. Rewrite by completing the square:  $x^2 - 8x + 13$ 

**5.** Find the value of:

$$\cos\left(\frac{\pi}{2}\right)$$

**6.** Solve for y:

$$4 + \ln(y) = 18$$

$$2ny = 14$$



7. Graph the function  $y = e^{-x}$ .

Label with the following values (if applicable): each intercept, location of each asymptote, and (x, y) coordinates of each min and max. Also include the coordinates of one other point.



**8.** Solve for y (write answer as a rational number):

$$4^y = 8$$
  $\partial = \partial^3$ 

$$y = \frac{3}{2}$$

9. If 
$$f(x) = 2x^5 + 7x^3 - 8x + 17$$
, find  $f'(x)$ .

**10.** If  $y = \sin(\theta)$ , find  $dy/d\theta$ .

(0s(0)

11. If  $f(x) = 3\tan(2x)$ , find f'(x).

65e(2(2x)

12. If  $g(\theta) = \sin(\theta^2 + \theta)$ , find  $g'(\theta)$ .

Cos(02+0)(20+1)

- 13. Find the derivative of
  - $q(\theta) = (\theta + \pi)\cos(\theta)$

(OSO + (O+T) (-SIND)

- 14. Find the derivative of
  - $f(t) = \frac{t}{e^t}$

- 15. Find the derivative of
  - $f(t) = \frac{t+1}{t^{3/2}}$

- **16.** Find a function f(t) whose derivative is:
  - $f'(t) = \cos(t) \frac{1}{t}$

sin(t)-ln/t/+c

- 17. Evaluate the indefinite integral:
  - $\int (3-x)^5 dx$

- 18. Evaluate the indefinite integral:
  - $\int 3t^2 \cos(t^3) dt$

 $\sin(t^3)+C$ 

- 19. Evaluate the definite integral:
  - $\int_{-1}^{2} (2x^2 1) dx \qquad \frac{2x^3}{3} x$

- **20.** Evaluate the definite integral:  $=\frac{2}{3}(z)^3-(z)$ 
  - $\int_4^9 \frac{1}{\sqrt{t}} dt \qquad -\left(\frac{2}{3}(-1)^3 (-1)\right)$