| Calculus ABC Test II—Version 3806 | Name: | |---|-----------------| | Lecture section: | Student Number: | | PUT ANSWERS IN BOXES. NO BOOKS/NOTES/
Simplify answers where possible. Include units where | | | 1. Find the equation of the line between the points $(1, and (2, 4))$ in $slope-intercept$ form. | , 1) | | 2. Find the value of: | | | $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$ | | | 3. Solve for r : $\sqrt{r+3} - 8 = 0$ | | | 4. Rewrite by completing the square: $x^2 + 6x + 4$ | | | 5. Find the value of: | | | $\arctan\left(-1\right)$ | | | 6. Solve for <i>x</i> : | | | $2\ln(2x) - \ln(4x) = \ln(3)$ | | | 7. Graph the function $y = e^{-x}$.
Label with the following values (if applicable): each int cept, location of each asymptote, and (x, y) coordinates of each min and max. Also include the coordinates one other point. | tes | | 8. Solve for x (write answer as a rational number): | | | $16^x = \frac{1}{8}$ | | | 9. If $f(s) = 3s^4 - 5s^2 - 3s + 7$, find $f'(s)$. | | | 10. If $g(\theta) = \tan(\theta)$, find $g'(\theta)$. | | |--|--| | 11. If $f(t) = \ln(3t^2)$, find $f'(t)$. | | | 12. If $g(\theta) = \cos(\theta^2 + \theta)$, find $g'(\theta)$. | | | 13. Find the derivative of | | | $F(x) = x^{5} \ln(x)$ 14. Find the derivative of | | | $g(x) = \frac{x^3 + 2}{\tan(x)}$ | | | 15. Find the derivative of $h(x) = \frac{\cos(x)}{1-x}$ | | | 16. Find a function $f(t)$ whose derivative is: $f'(t) = 5t + e^t$ | | | 17. Evaluate the indefinite integral: $\int \sin(3\theta + 2) d\theta$ | | | 18. Evaluate the indefinite integral: $\int 2\theta \cos(\theta^2 + 5) d\theta$ | | | 19. Evaluate the definite integral: | | | $\int_{-1}^{2} (3x - x^2) dx$ 20. Evaluate the definite integral: | | | $\int_{1}^{2} e^{-x} dx$ | |