| Calculus ABC Test II—Version 2617 | Name: | |---|-----------------| | Lecture section: | Student Number: | | PUT ANSWERS IN BOXES. NO BOOKS/NOTES/CA
Simplify answers where possible. Include units where new | | | 1. Find the equation of the line with x-intercept 2 and y-intercept -3 in point-slope form. | 1 | | 2. Find the value of: | | | $\arcsin\left(-1\right)$ | | | 3. Solve for x : $\sqrt{x} - 5 = 7$ | | | 4. Rewrite by completing the square: $x^2 - 8x + 13$ | | | 5. Find the value of: | | | $\cos\left(\frac{\pi}{2}\right)$ | | | 6. Solve for y : $4 + \ln(y) = 18$ | | | 7. Graph the function $y = e^{-x}$.
Label with the following values (if applicable): each intercept, location of each asymptote, and (x, y) coordinates of each min and max. Also include the coordinates of one other point. | S | | 8. Solve for y (write answer as a rational number): | | | $4^{y} = 8$ | | | 9. If $f(x) = 2x^5 + 7x^3 - 8x + 17$, find $f'(x)$. | | | 10. If $y = \sin(\theta)$, find $dy/d\theta$. | | |--|--| | | | | 11. If $f(x) = 3\tan(2x)$, find $f'(x)$. | | | | | | | | | 12. If $g(\theta) = \sin(\theta^2 + \theta)$, find $g'(\theta)$. | | | | | | 13. Find the derivative of | | | $g(\theta) = (\theta + \pi)\cos(\theta)$ | | | | | | 14. Find the derivative of | | | $f(t) = \frac{t}{e^t}$ | | | 15. Find the derivative of | | | $f(t) = \frac{t+1}{t^{3/2}}$ | | | 16. Find a function $f(t)$ whose derivative is: | | | $f'(t) = \cos(t) - \frac{1}{t}$ | | | 17. Evaluate the indefinite integral: | | | $\int (3-x)^5 dx$ | | | 18. Evaluate the indefinite integral: | | | $\int 3t^2 \cos(t^3) dt$ | | | 19. Evaluate the definite integral: | | | $\int_{-1}^{2} (2x^2 - 1) dx$ | | | 20. Evaluate the definite integral: | | | $\int_4^9 \frac{1}{\sqrt{t}} dt$ | | | $J4 \sqrt{t}$ | |