| Calculus ABC Test II—Version 2379 | Name: | |--|-----------------| | Lecture section: | Student Number: | | PUT ANSWERS IN BOXES. NO BOOKS/NOTES Simplify answers where possible. Include units where | | | 1. Find the equation of the line through the point with slope 1 in <i>slope-intercept</i> form. | (1,7) | | 2. Find the value of: | | | $\arctan\left(-1\right)$ | | | 3. Solve for x : $\frac{x-2}{5} = \frac{x+4}{20}$ | | | 4. Rewrite by completing the square: $3r^2 - 6r - 1$ | | | 5. Find the value of: | | | $\arccos\left(-1\right)$ | | | 6. Solve for t : $e^{3t} - a^3 = 0$ | | | 7. Graph the function $y = e^{-x}$.
Label with the following values (if applicable): each is cept, location of each asymptote, and (x, y) coording of each min and max. Also include the coordinate one other point. | nates | | 8. Solve for t (write answer as a rational number): $100^{3t+2}=10$ | | | 9. If $f(s) = 5s^3 - 2s^2 - 7s + 9$, find $f'(s)$. | | | 10. If $g(\theta) = \cos(\theta)$, find $g'(\theta)$. | | |--|--| | | | | 11. If $y = \tan^5(\theta)$, find $dy/d\theta$. | | | 11. If $y = tan(v)$, find ay/av . | | | | | | 12. If $z = \tan^3(t)$, find dz/dt . | | | | | | | | | 13. Find the derivative of | | | $f(x) = 4e^x \cos(x)$ | | | 14. Find the derivative of | | | | | | $f(x) = \frac{1+x}{\sqrt{x}}$ | | | 15. Find the derivative of | | | $f(x) = \frac{\ln(x)}{x+1}$ | | | 16. Find a function $f(t)$ whose derivative is: | | | $f'(t) = \sqrt{t} + \frac{2}{t}$ | | | 17. Evaluate the indefinite integral: | | | $\int (2-x)^4 dx$ | | | 18. Evaluate the indefinite integral: | | | $\int e^t \sin(e^t) dt$ | | | 19. Evaluate the definite integral: | | | $\int_0^2 (6x^2 - x) dx$ | | | 20. Evaluate the definite integral: | | | $\int_{1}^{2} e^{-x} dx$ | | | | |