Nanoparticles and Nanowires


Fabrication of nanoparticles of the desired shape and physical properties is a task of great importance for modern electronics, sensors, nanodevices, catalysis, and so forth. One of the approaches for fabricating nanoparticles is based on templating single molecules. We metallize single flexible synthetic polyelectrolyte molecules and prepare structures resembling a 1-D sequence (50-1000 nm in length) of metallic clusters of 2-5 nm in diameter deposited on a solid substrate. The length of the wires is proportional to the contour length of the underlying PE macromolecules. This opens the possibility of regulating the size of nanowires by the molecular weight of the PE. One of the advantages of using synthetic PE is the diverse possibilities of synthetic polymer chemistry for fabricating macromolecules of dedicated size and structure. It would be possible to construct one-molecule devices via metallization of macromolecules of the appropriate architecture.

We use a magnetic field for the fabrication of wire-like structures which are made by linking Fe3O4 superparamagnetic nanoparticles (SPN) with polyelectrolyte molecules. These wires are structures in which the SPN particles are linked permanently and they conserve their shape in spite of thermal motion in the fluid. Further, upon deposition onto solid substrates in the presence of an external magnetic field, they form parallel patterns which remain attached to the substrate with lithography-like stubbornness. Thus, they are immune to washings and changes in the direction of the applied magnetic field. It should be noted that these aligned nanowires constitute an anisotropic system. Magnetization hysteresis on these aligned wires was measured, and it was found that the coercive fields show differences when the magnetic field during the measurement was parallel and perpendicular to the patterns, respectively.

Nanowires. Magnetic
Figure 1. Magnetic Nanowires. [Sheparovych, R.; Sahoo, Y.; Motornov, M.; Wang, S.; Luo, H.; Prasad, P. N.; Sokolov, I.; Minko, S. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Chemistry of Materials 2006, 18(3), 591-593. Details]

The magnetic nanowires can be manipulated in an external magnetic field. They can also be used as building blocks for the fabrication of hierarchical two-dimensional (2-D) and three-dimensional (3-D) structures.


Major Directions:

Nanowire
Figure 2. Nanowires based on single molecules. Preparation.

Nanoparticles
Figure 3. Nanowires and nanoparticles of different shapes based on single molecules. AFM Visualization.

Group co-operates with:
Publications on Topic (review titles are marked blue):
  1. Tokarev, I.; Tokareva, I.; Minko, S. Optical Nanosensor Platform Operating in Near-Physiological pH Range via Polymer-Brush-Mediated Plasmon Coupling. ACS Applied Materials & Interfaces 2011, 3(2), 143-146. Details
  2. Lupitskyy, R.; Minko, S. Robust synthesis of nanogel particles by an aggregation-crosslinking method. Soft Matter 2010, 6(18), 4396-4402. Details
  3. Tsyalkovsky, V.; Burtovyy, R.; Klep, V.; Lupitskyy, R.; Motornov, M.; Minko, S.; Luzinov, I. Fluorescent Nanoparticles Stabilized by Poly(ethylene glycol) Containing Shell for pH-Triggered Tunable Aggregation in Aqueous Environment. Langmuir 2010, 26(13), 10684-10692. Details
  4. Tokarev, I.; Tokareva, I.; Gopishetty, V.; Katz, E.; Minko, S. Specific Biochemical-to-Optical Signal Transduction by Responsive Thin Hydrogel Films Loaded with Noble Metal Nanoparticles. Advanced Materials 2010, 22(12), 1412-1416. Details
  5. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010, 9(2), 101-113. Details
  6. Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science 2010, 35(1-2), 174–211. Details
  7. Minko, S.; Luzinov, I.; Motornov, M.; Sheparovych, R.; Lupitskyy, R.; Liu, Y.; Klep, V. Coatings via self-assembly of smart nanoparticles. ACS Symposium Series 2009, 1002 (Smart Coatings II, edited by Provder, Theodore and Baghdachi, Jamil), pp 145-157. Details
  8. Motornov, M.; Zhou, J.; Pita, M.; Tokarev, I.; Gopishetty, V.; Katz, E.; Minko, S. An Integrated Multifunctional Nanosystem from Command Nanoparticles and Enzymes. Small 2009, 5(7), 817-820. Details
  9. Motornov, M.; Sheparovych, R.; Lupitskyy, R.; Minko, S. Multifunctional nanosystems from stimuli responsive nanoparticles coated with a reversibly switchable shell. PMSE Preprints 2009, 101, 1245-1246.
  10. Tsyalkovsky, V.; Burtovyy, R.; Klep, V.; Lupitskyy, R.; Minko, S.; Luzinov, I. Responsive fluorescent silica nanoparticles via grafting to method. PMSE Preprints 2009, 101, 1680-1681.
  11. Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Colloidal Systems on the Nanometer Length Scale In Handbook of Surface and Colloid Chemistry, Third Edition; Birdi, K. S., Ed.; CRC Press: Boca Raton, 2008; Ch. 5, pp 131-154. Details
  12. Motornov, M.; Zhou, J.; Pita, M.; Gopishetty, V.; Tokarev, I.; Katz, E.; Minko, S. "Chemical Transformers" from Nanoparticle Ensembles Operated with Logic. Nano Letters 2008,
    8(9), 2993-2997. Details
  13. Lupitskyy, R.; Motornov, M.; Minko, S. Single Nanoparticle Plasmonic Devices by the "Grafting to" Method. Langmuir 2008, 24(16), 8976-8980. Details
  14. Tokarev, I.; Tokareva, I.; Minko, S. Gold-Nanoparticle-Enhanced Plasmonic Effects in a Responsive Polymer Gel. Advanced Materials 2008, 20(14), 2730-2734. Details
  15. Jiménez, J.; Sheparovych, R.; Pita, M.; Garcia, A. N.; Dominguez, E.; Minko, S.; Katz, E. Magneto-Induced Self-Assembling of Conductive Nanowires for Biosensor Applications. Journal of Physical Chemistry C 2008, 112(19), 7337-7344. Details
  16. Tsyalkovsky, V.; Klep, V.; Ramaratnam, K.; Lupitskyy, R.; Minko, S.; Luzinov, I. Fluorescent Reactive Core-Shell Composite Nanoparticles with A High Surface Concentration of Epoxy Functionalities. Chemistry of Materials 2008, 20(1), 317-325. Details
  17. Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Minko, S. Superhydrophobic Surfaces Generated from Water-Borne Dispersions of Hierarchically Assembled Nanoparticles Coated with a Reversibly Switchable Shell. Advanced Materials 2008, 20(1), 200-205. Details
  18. Sheparovych, R.; Sahoo, Y.; Motornov, M.; Wang, S.; Luo, H.; Prasad, P. N.; Sokolov, I.; Minko, S. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. PMSE Preprints 2008, 99, 554.
  19. Lupitskyy, R.; Motornov, M.; Minko, S. Plasmonic pH sensor based on a single composite nanoparticle. PMSE Preprints 2008, 99, 506.
  20. Tokarev, I.; Tokareva, I.; Minko, S. Surface plasmon resonance effects in stimuli-sensitive polyelectrolyte/gold nanoparticle hybrid membranes. PMSE Preprints 2008, 99, 160-161.
  21. Salloum, D.; Minko, S.; Motornov, M.; Lupitskyy, R.; Sheparovych, R.; Sherman, F.; Gartstein, V. Responsive coating design on substrates/particles. PMSE Preprints 2008, 99, 66.
  22. Raimondi, M.; Soliani, A. P. E.; Tokarev, I.; Minko, S. Template-assisted fabrication of organic-inorganic hybrid nanofibers. Polymer Preprints 2007, 48(1), 1006-1007.
  23. Motornov, M.; Sheparovych, R.; Lupitskyy, R.; MacWilliams, E.; Minko, S. Responsive colloidal systems: Reversible aggregation and fabrication of superhydrophobic surfaces. Journal of Colloid and Interface Science 2007, 310(2), 481-488. Details
  24. Sheparovych, R.; Sahoo, Y.; Motornov, M.; Wang, S.; Luo, H.; Prasad, P. N.; Sokolov, I.; Minko, S. Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Chemistry of Materials 2006, 18(3), 591-593. Details
  25. Synytska, A.; Ionov, L.; Dutschk, V.; Minko, S.; Eichhorn, K.-J.; Stamm, M.; Grundke, K. Regular patterned surfaces from core-shell particles. Preparation and characterization In Progress in Colloid and Polymer Science; Springer: Berlin, 2006; Vol. 132, pp 72-81 Details
  26. Synytska, A.; Ionov, L.; Minko, S.; Motornov, M.; Eichhorn, K.-J.; Stamm, M.; Grundke, K. Tuning wettability by controlled roughness and surface modification using core-shell particles. PMSE Preprints 2004, 90, 624-625. pdf version
  27. Kiriy, A.; Gorodyska, G.; Minko, S.; Stamm, M.; Tsitsilianis, C. Single Molecules and Associates of Heteroarm Star Copolymer Visualized by Atomic Force Microscopy. Macromolecules 2003, 36(23), 8704-8711. Details
  28. Kiriy, A.; Gorodyska, G.; Minko, S.; Tsitsilianis, C.; Jaeger, W.; Stamm, M. Chemical Contrasting in a Single Polymer Molecule AFM Experiment. Journal of the American Chemical Society 2003, 125(37), 11202-11203. Details
  29. Kiriy, N.; Jähne, E.; Adler, H.-J.; Schneider, M.; Kiriy, A.; Gorodyska, G.; Minko, S.; Jehnichen, D.; Simon, P.; Fokin, A. A.; Stamm, M. One-Dimensional Aggregation of Regioregular Polyalkylthiophenes. Nano Letters 2003, 3(6), 707-712. Details
  30. Gorodyska, G.; Kiriy, A.; Minko, S.; Tsitsilianis, C.; Stamm, M. Reconformation and Metallization of Unimolecular Micelles in Controlled Environment. Nano Letters 2003, 3(3), 365-368. Details
  31. Gorodyska, G.; Kiriy, A.; Minko, S.; Stamm, M. Metallic nanoparticles from single polyelectrolyte molecules. Materials Research Society Symposium Proceedings 2002, 726, 187-192.
  32. Kiriy, A.; Minko, S.; Gorodyska, G.; Stamm, M.; Jaeger, W. Palladium Wire-Shaped Nanoparticles from Single Synthetic Polycation Molecules. Nano Letters 2002, 2(8), 881-885. Details
  33. Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M. Mineralization of Single Flexible Polyelectrolyte Molecules. Journal of the American Chemical Society 2002, 124(34), 10192-10197. Details