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Abstract

We present here a review of electrical transport models in Mole-
cularly Doped Polymer (MDP) materials used for photocopiers and
laser printers. The common method of electronic transport evaluation
in these materials employs measurements of transient photocurrent by
the time-of-flight (TOF) technique. TOF experiments use mainly the
mobility concept to elucidate the mechanisms of electronic transport
in MDP. However, additional experimental parameters are needed to
account satisfactorily for the temperature and electric field activated
complex transport phenomena observed in these materials. In partic-
ular, the spatial and energy dispersive experimental details have been
left out in most experimental works while measuring the transient elec-
trical conductivity in MDP. Additional information regarding the ve-
locity distribution of the spreading charge packets and trapping models
are detailed in this work for achieving a better understanding of the
electronic charge transport in MDP. This review brings together the
current theories extended for the electrical transport in these materials.

PACS: 72.10.Bg, 72.20.-i , 72.80.Ng, 72.80.-r, 72.90.+y
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1 Introduction

During the last two decades charge transport in Molecularly Doped Polymers
(MDPs), or the so-called disordered organic systems, has become a topic of
intensive research due to their use as photoconductors [1—3], photo-refractive
devices, organic light-emitting diodes (OLEDs) [4—10] and synapse bond
devices [11—13].

MDP consist of charge transport molecules dispersed in a host polymer
matrix. All above-mentioned applications of these devices involve electrical
carrier transport. In addition to their practical significance, MDP are also a
good choice for studying basic mechanisms of charge transport in molecular
solids, as all the relevant variables, including temperature, electric field, and
the distance between hopping sites, easily can be varied in them.

Carrier transport can be evaluated by various means but the commonly
used method is the Time-Of-Flight (TOF) technique [1—3, 14, 15]. In this
technique, the induced transient current is measured when a charge carrier
packet moves in a thin sample. TOF experiments in organic materials [6,
16—18] and other insulating systems [1, 19] give the kinetics of transient
current with an initial fast drop to a near plateau level shown in Fig. 1a for
a specific MDP system - pyrazoline compound in polycarbonate, DEASP:PC
(Dyethyl-Aminostyryl-Dietylphenil-Pyrazoline in PC).

Figure 1: TOF transient current curves for: (a) DEASP 50%, L = 8.3µm,
V0 = 300(V), T = 285K, ttr = 68µ sec [20]; (b) Typical TOF transient
current for semiconductors.
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When the transport charge is collected at the receiving electrode, there
is another drop in the current amplitude. Possible suggested models var-
ious spatial dispersion mechanisms involved in charge transport, such as
diffusion, trapping, Coulombic spread and detrapping. The current shape
thus can be quite intricate and depends also strongly on parameters such as
device thickness, temperature, dopant level and electric field intensity [1, 6].

The shape of the transient currents in MDP differs significantly from that
in semiconductor materials, shown in Fig 1b, thus the well-developed the-
ory of charge transport in semiconductor crystalline materials is not useful
for describing charge transport in MDP [2, 21]. Many investigators identify
the above mentioned TOF signals characteristics with the so-called ‘nondis-
persive’ charge transport [4, 17]. In this case the TOF current transients
inflection point is taken by most investigators as the carrier transit time,
from which the bulk drift mobility, µ, is calculated. The time t1/2, where
the transient current falls to half its maximum value, is also used sometimes,
e.g., [4, 22]. Mobility is taken by most investigators as the sole important
electrical characteristic of charge transport layers in MDP. However, since
electrical carrier motion is, generally, a complex function of many physical
factors, several types of mobility are defined, such as microscopic mobility
µ and effective mobility µeff [23]. As the mobility of charge carriers in
polymeric systems is typically several orders of magnitude lower than in
crystalline systems one has to understand how disorder reduces the effective
mobility [24]. The interpretation of data differs in the details from system
to system, but is usually based on the assumption that the transport has a
“hopping” nature and dispersive in the sense that the drift velocity is com-
bined with the velocity of charge packet spread through hopping sites which
are distributed homogeneously in the material [2, 23].

Numerical investigations of hopping transport in the disordered matrix
were undertaken by Bässler [6, 25], Gartstein and Conwell [26], Dunlap et
al. [27], Novikov et al. [28], and Fishchuk and coworkers [29]. Important
simulations of hopping in energetically disordered lattices with a Gaussian
Density of States (DOS) denoted as the Gaussian Disorder Model (GDM)
were performed by Bässler [6, 25]. Gartstein and Conwell [26] suggested
that the spatial correlation of the energies of transport sites in disordered
media has to be taken into account also to describe properly the field de-
pendence of mobility over a broad electric field range. Extensive computer
simulations by Dunlap and coworkers [27], and Novikov et al. [28], resulted
in an amended version of the formalism, which provided a good explanation
of the experimental analysis. The latter was also supported by an analytic
effective-medium theory recently developed by Fishchuk and coworkers [29],

784



which demonstrated that the disorder formalism can also account for pecu-
liarities of charge transport in weakly disordered organic systems, provided
one uses the correct expression for the jump rates.

One of the limitations of the disorder formalism is, however, that it does
not address carrier transport in the presence of traps. This has led to the
recent interest in trapping effects [29—33]. Traps in disordered media are ex-
trinsic, localized states that differ from the majority carrier hopping states
in that they require substantially larger input energy to release the charge
carriers back to the intrinsic DOS. For instance, a hole or electron prop-
agating through a material may be affected by trapping on a molecule of
another type of material provided the latter has a lower ionization poten-
tial or a higher electron affinity. The problem of trap-controlled transport
is also recognized as being very important in applications of new organic
materials used for electronic devices. For example, since electronic trans-
port in π-conjugated polymers is often trap affected, charge-carrier transport
controlled by deep trapping becomes important in photorefractive organic
systems where moderately deep traps play an essential role.

In practice TOF experiments in MDP exhibit either a so-called spa-
tially ‘dispersive’ TOF transient characteristic with an almost unrecogniz-
able plateau region, or with a slope or inclination in the plateau region of
Fig. 1a.

Typically, the mobility µ is derived from the time tT defined by the
intersection of the asymptotes to the plateau and tail of the photocurrent
transients [1—3], see Fig. 1a. Usually, the tail of the current does not decrease
linearly. Hence the velocity obtained from the measured transit time tT and
the sample thickness is not the mean velocity of the moving charge packet.

To overcome the difficulty in the explanation of these experimental fea-
tures in charge transport properties of various polymer materials, investiga-
tions were undertaken on charge transport process in the last two decades
using different courses based on different points of view. Some authors at-
tempted to analyze TOF-transients using electrostatics and electrodynamics
concepts [14, 18, 21, 32—34] while others used the physical models of disorder
in evaluating solids charge carrier distribution and transport [6, 9, 25, 27,
35—37].

2 Mobility investigations

The major result of experimental studies in organic solid thin films was the
observation of the exponential dependence of the mobility µ [2, 3] on the
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external applied electric field and temperature, phenomenologically repre-
sented by the expression given by Gill [38] :

µ (T,E, ρ) = µ0 exp

·
−
³
∆0 − β

√
E
´µ 1

kT
− 1

kT0

¶¸
(1)

where µ (T,E, ρ) is the drift mobility as a function of temperature T, elec-
tric field E, and dopant intramolecular distance ρ. k is the Boltzmann’s
constant, ∆0 the zero electric field activation energy and µ0 , β and To are
fitting constants discussed in detail in [20]. The values of the parameters
To, ∆0 and β are determined from TOF measurements and depend on the
material, but the

√
E dependence and the shifted Arrhenius temperature

activated behavior are universal.
The dependence µ ∝ exp√E suggests the Poole-Frenkel effect, i.e., the

lowering of the Coulomb barrier by the applied electric field [16] or Schottky
barrier lowering due to image forces.

For a long time this empirical expression has been subjected to intense
theoretical and experimental investigations [39], to explain the peculiar de-
pendencies embodied in equation (1). Pfister [40] used an empirical expres-
sion identical to (1) with β

√
E0 = ∆0, which allowed an alternative method

of obtaining ∆0, i.e., extrapolating lnµ vs
√
E (with T as a parameter) to

a field
√
E0 at which the mobility temperature dependence vanishes.

The intersection of the lines on the Arrhenius plot of mobility measure-
ments for typical MDP, shown in Fig. 2, gives a temperature To at which
the E-dependence vanishes (the so-called compensation temperature) and
was observed experimentally by Peled and Schein [41].

The physical origin of the compensation temperature T0 remains unclear
to date although some explanations have been proposed by Peled and Schein
[42]. An attempt to relate the microscopic origin of the compensation tem-
perature to the competition between positional or orientational disorder and
energetic disorder has been given by Soos et al. [43]. As shown in Fig. 2, the
temperature T0 has been observed to occur experimentally [16]. For data
points with T > T0, the slope of the mobility - field strength dependence is
negative:

∂µ

∂E
< 0 (2)

while for T < T0 it is positive:

∂µ

∂E
> 0 (3)
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Figure 2: Mobility versus T−1plot. Another method of obtaining T0 is to
plot the mobility versus electric field with T−1as a parameter and obtain the
temperature at which the field dependence vanishes. The value obtained in
this plot is T0 = 372 oK. (Plot from [41])

The later is the more commonly observed behavior, in which the electric
field lowers the barrier of escaping from the Coulomb potential [6, 16, 44].
To probe the physical significance of the field dependence of mobility, Schein
and coworkers [16] have obtained data over the widest electric field range
yet reported, from 0.82 to 206 V/ µm.

Most workers in this field agree that charge transport in MDP occurs by
‘hopping’. The charge carrier is viewed as highly localized, hopping among
dopant molecules, with the polymer matrix serving mainly as an inert spacer.
In this model, the physical effect of the electric field is usually thought to
bring energy levels into closer coincidence, thereby reducing hopping energy
barriers. This model leads to the intuitive prediction that larger electric
fields should increase the mobility. However, the experiments [41] in which
hole mobilities were observed for the first time to decrease with increasing
electric fields, suggest that this picture may be incomplete.

Schein and coworkers [16] made the following conclusions. Over the
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entire range, the data are consistent with a field dependence of the form
exp
√
E and no other function suggested in the literature is consistent with

the data. While such a functional dependence is predicted by the Poole-
Frenkel theory, Schein and coworkers [16] showed an order of magnitude
agreement with this theory, but several objections to the applicability of
this theory to the data were raised. As many authors have pointed out, it
is difficult to assume that the space charge created by such a concentration
of Coulomb centers can exist in MDP films and be undetected. Schein and
coworkers [16] have pointed out also that the distance to the top of the po-

tential barrier which they estimated in the range rp ≈ 43÷430
o
A for typical

fields in the range E ≈ 10 ÷ 100 V/µm is much larger than the calculated

distance between the molecules 10
o
A for 50% DEH: polycarbonate. There-

fore, the hole should complete its hop in a much shorter distance than the
distance to the peak of the potential barrier determined by the Coulomb
potential and the applied electric field [16]. Finally, the Poole-Frenkel effect
does not explain the temperature-independent, field-dependent term at T0,
whose physical origin remains unclear.

3 Dispersive and nondispersive TOF transients

The nondispersive TOF transient current form with a distinct plateau was
related to the bulk mobility, while the dispersive tail is understood by most
investigators as the label for identifying specific mechanisms in TOF current
transients such as carriers’ dispersion. Several theories have been developed
to analyze the microscopic origin of carrier dispersion [22]. The first was
the continuous - time random walk (CTRW) theory developed by Scher and
Montroll [45] which describes the process in statistical terms and therefore
does not specify the underlying physical mechanism. The CTRW theory is
based on a non-Markovian transport process. According to the theory, the
carrier migration is a time-dependent random walk controlled by a slowly
varying broad distribution of hopping times. Featureless dispersive non-
Gaussian transients and an anomalous thickness dependence of drift mo-
bility were predicted and indeed observed in amorphous As2Se3 [46] and
in triphenylamine molecularly dispersed in polycarbonate [40]. The thick-
ness dependence of the mobility is generally interpreted as an anomalous
dispersion of the charge carrier sheet.

Amorphous organic charge-transporting solids are typically character-
ized by a very weak van der Waals type of bonding between molecules
resulting in very narrow energy bands for which the common band the-
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ories of charge transport are not adequate. Instead, it has been widely
recognized that charge transport in amorphous organic solids is a hopping
process, which involves electric field driven charge exchange between neigh-
boring molecules. The charge hopping probability is governed by the energy
matrix of the amorphous solid which is a sensitive function of the intermole-
cular distance and the mutual molecular orientation [22]. The fluctuation
of the molecular site energies is commonly referred to as ‘diagonal disor-
der’ and the fluctuation of the intermolecular distances is referred to be
the ‘off-diagonal elements’ of the energy matrix. Several computer simu-
lation studies have been carried out in an effort to analyze separately the
effect of the off-diagonal and diagonal disorder of charge dispersion. This
was done by simulation of hopping either among a spatially random array
of isoenergetic sites [47] or as a cubic lattice of a Gaussian distribution of
hopping site energies with a 0.1 eV width [25]. Both studies predicted that
anomalous dispersive transport could be observed only in the early stages
of the transient, typically within the first few percent of the overall transit
time. This early dispersive region was determined to be the consequence
of the dynamic equilibration of the carriers with the environment following
the instantaneous injection of a sheet of carriers into the bulk of the ma-
terial. After this equilibration stage, the simulated current trace becomes
less dispersive, i.e. with features of a plateau and a long tail. Pfister and
Scher [46] conclude that such a feature also be referred to as dispersive or
non-dispersive, depending on the slope of the plateau and the length of the
tail.

4 The effective temperature T eff

The effective temperature Teff defined by the relationship T
−1
eff = T−1−T−10

from Eq. (1) has been defined to cast experimental results symmetrically
with respect to field and temperature [38, 40]. Like T0, this experimental
temperature, Teff , appears to be a new transport system parameter, with
no obvious physical interpretation. It has been suggested [24, 40] that the
effective temperature originates from a temperature dependent dispersion
parameter indicating a spread of the activation energy of the hopping carri-
ers, that is, diagonal disorder for an exponential distribution of trap-release
energies N (ε) ∝ exp ( −αε/kT ), T0 = α−1T [40]. α is the measure of the
dispersion for the ideal case of non-Gaussian transport which occurs for
transit times tT of the order of individual hopping times, when the disper-
sion of the carrier packet is caused by fluctuations of the bulk mobility. In
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this case, the TOF current is approximated to be independent of the actual
source of dispersion [40, 45] and given by:

I (t) ∝
½

t−(1−α), t < tT
t−(1+α), t > tT

; 0 < α < 1, (4)

For temperature-independent fluctuations of the hopping distance: α ∼=
ρ0/ρ {ln [L/l (E)]}2/3 where 2ρ0 is the Bohr radius of the charge localization,
L is the thickness of the layer and l (E) is the mean displacement from the
illuminated surface. Also tT ∝ (L/l (E))1/α exp(∆/kT ). However, while the
temperature dependence of α can rationalize the results in the non-Gaussian
regime, when the mobility measured by TOF depends on the sample thick-
ness, the activation energy which results from a typical Gaussian distribution
of width for polymers, is much smaller than experimentally observed. Also,
the time range where non-Gaussian transport prevails is much too short.
Bässler [6] showed that the phenomenologically defined compensation tem-
perature T0 is related to the disorder parameters of the system T0 = σ/k

P,
where σ is the energetic (diagonal) disorder parameter and

P
is the off-

diagonal parameter, k is the Boltzmann’s constant. For σ = 0.1 eV andP
= 3, T0 = 387 K which is comparable with the experimentally observed

compensation temperatures [41]. The microscopic origin of the compensa-
tion temperature, where the mobility becomes field-independent, was con-
nected to the competition between energetic disorder, which was assumed
to be of Gaussian, and positional, or orientation, disorder [43]. As noted
by Schein [2], the occurrence of a temperature T0 implies an E-dependent
hopping factor. Compensation was shown to occur for hopping rates with
different intrinsic field dependencies by considering the strong disorder limit.
Mobility simulations with Miller-Abrahams hopping rates in which steps to
higher energy are activated and rates to lower energy are constant, were most
extensively used in MDP simulations. Soos and coworkers [43] used Marcus
rates and indicate a low T0 at low dopping in dilute systems. The treatment
of Soos and coworkers [43] places position and orientation disorder on equal
footing with energetic disorder and brings out their fundamentally different
field dependencies. Soos and coworkers [43] conclude that the mobility de-
creases with E for motion over disordered sites with constant energy. The
field shifts the transport to higher-energy sites with faster hopping. Com-
pensation between position or orientation disorder and energetic disorder
occurs at some T0 that depends on the system and rates. They retain the
energetic disorder of the GDM but treat position and orientation disorder
explicitly and find opposite field dependences that compensate at T0.
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5 Microscopic models of charge propagation in
TOF experiments

The Gaussian disoder model developed by Bässler [25] and verified later
by Dunlap et al. [35] describes the transport in MDP systems as a biased
random walk among dopant molecules with Gaussian - distributed random
site energies. In theoretical investigations using the energetic disoder ap-
proach it has been shown also how dipolar-disorder can explain not only the
high field, but also the low field mobility behaviour [27]. It was shown [35]
that both the empirical characterization and the analytical results for one-
dimensional transport support the idea that correlated disorder - Charge
Dipole Interaction is necessary for obtaining field-dependent mobilities of
the Poole-Frenkel type.

A long time debate continues regarding the nature of charge carriers
in MDP and other organic solids of a current technological interest [48].
The strong thermal activation of the field dependent mobility µ, seen in
the experiments, can arise from a carrier’s interaction with phonons (po-
laron binding), or from peculiar static properties of the material (energetic
and spatial disorder). The latter hypothesis was the primary motivation
underlying the Gaussian Disorder Model (GDM) of Bässler [25], in which
activated mobilities arise from carrier hopping through a Gaussian density of
transport states of energetic width σ ∼ 0.1eV, via Miller-Abrahams hopping
[25, 49]. Multiphonon processes typical for polaron transport are, however,
absent in this model. Schein and co-workers [2, 16], on the other hand, sug-
gested that carriers are polaronic and crucial to the understanding of the
adiabatic to nonadiabatic small polaron crossover. Others combined these
viewpoints with carriers assumed to be polarons moving in a disordered
medium [26, 43, 50]. However, polaron-based models appear to require un-
acceptable values of polaron binding energies or transfer integral values in
these materials. Parris and coworkers [48] tried to show that this apparent
paradox has a natural resolution in light of some recent experimental and
theoretical characterization of the correlated, dipolar nature of the disorder
through which carriers move in MDP.

5.1 Transport of holes by hopping processes

Pfister [40] claimed that only hole transport can be observed in MDP materi-
als. He also got evidence that holes move by a hopping process and that the
transit time, ttr, increases strongly with decreasing dopant concentration ρ
and temperature T . He concluded that the strong concentration dependence

791



on the thermally activated drift mobility of holes, which occurs via hopping,
is associated with the dopant molecules and that on a microscopic scale,
charge transport in molecularly dispersed systems can be visualized as a
transition of an electron from a neutral molecule to the neighboring “molec-
ular cation” (hole transport) or from the “molecular anion” to a neighboring
neutral molecule (electron transport). This model suggests that the trans-
port properties vary strongly with the parameters of the dopant molecules,
quite differently from transport in the ordered state (molecular crystals),
where for a wide range of materials electron and hole mobilities are of the
order of 1cm2/Vsec. Evidently, in the crystalline state where narrow band
formation might occur, the influence of the molecular parameters on the
transport properties is reduced and one cannot reasonably infer anything
about charge transport in disordered solids from the corresponding crys-
talline data [40].

As a result of the diagonal and off-diagonal disorder, carriers propagating
through the bulk of the solid experience a distribution of transit times. Such
a distribution can be thought to contribute to dispersion in transient TOF
current signals [22]. Yuh and Stolka [22] presented experimental evidence for
separating the diagonal and off-diagonal dispersion elements and the field
dependent Gaussian dispersive hole transport in MDP represented by N,N’-
diphenyl-N,N’-bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’diamine (TPD) mole-
cularly dissolved in polycarbonate (PC). They analyzed the dispersion of
charge carrier packets in organic solids also by examining the normalized
TOF signals obtained over a wide range of electric fields, sample thicknesses
and temperature, and found that carrier dispersion appears to follow the
time-dependent Gaussian statistics with a broader Gaussian bandwidth ob-
served at higher electric fields. They explain the Gaussian dispersion by the
off-diagonal disorder and the existence of finite field-independent dispersion
at very long transit times and the narrowing of the dispersion with increas-
ing temperature by the diagonal disorder, i.e., by a distribution of hopping
site energies. All this also implied, however, that a proper theoretical de-
scription of the mobility requires a more complete characterization of the
disorder. While there is a considerable variety among amorphous molecular
solids, their transport properties exhibit certain regularities as seen from the
mobility — electric field - temperature dependences [1, 25]. These regulari-
ties give hope that a fairly simple uniform model with a modest number of
parameters can explain common behavior many of materials [51].

792



5.2 The disorder formalism and polaron formation

MDPs are understood to be mixtures of electron donor or acceptor mole-
cules in a polymer host in which charge transport involves charge transfer
between states associated with adjacent donor or acceptor sites [52]. Many
of the latest results on MDP have been interpreted within the disorder for-
malism given by Bässler and co-workers [1, 25] or by the polaron formation
[44, 48, 53, 54]. The disorder theory envisages the charge carrier energy
at each hopping site to be randomized with a Gaussian distribution and
characterized by an energy width of about 0.1 eV determined by the lo-
cal environment of the hopping site. The polaron theory assumes that the
charge carrier has strong interactions with some of the molecular vibrations
of the dopant molecule on which it resides. These interactions self-trap the
charge carrier and form the polaron, which can only hop to a new dopant
molecule while carrying along its molecular distortion.

While these theories have had success in explaining some aspects of the
transport data in MDP, difficulties still exist [2]. For example, the source of
the activation energy and, specifically, the magnitude of the contributions
due to disorder and polaron formation remain unclear [54]. The activation
energy is observed to be independent of ρ in some materials and depen-
dent on ρ in others. The polaron theory can qualitatively account for this
observation but the magnitudes of some of the parameters (the transfer in-
tegral and the prefactor) needed to explain the data appear unacceptably
large [2]. The disorder theory requires the postulation of coincidences or
cancellations of opposing effects to account for these observations. The lim-
itation of both theories is also that the electric field dependence lnµ ∝ √E
is experimentally observed in a wider range of fields than predicted by the
theory.

To shed further light on the microscopic hopping mechanism in MDP,
Schein and Borsenberg [52] have studied the effect of the host polymer on
the mobility. Several studies have demonstrated that the polymer host can
strongly affect the mobility of MDP and that both the activation energy
and prefactor of the mobility can be affected by the polymer host as shown
in [52] and references therein. Schein and Borsenberger [52] have chosen
to study p-diethylaminobenzaldehyde diphenylhydrazone (DEH) doped into
PC and Polystyrene (PS) because it was known that the activation energy
is independent of the distance between the hopping sites in DEH-doped PC.
This suggests that the interaction of the hopping site with the environment
is minimized in DEH-doped PC, thereby allowing the first-order effects of a
change in polymer host to be isolated. The data have been systematically
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deconvoluted, enabling the effect of the polymer on each of the parameters
in the transport equations to be determined independently. They conclude
that the field dependence of the mobility is independent of the polymer host
hence the first may be independent of the dipole moment of the molecules
in the environment of the hopping site. Such a picture is consistent with the
small polaron model of hopping. To explain their data within the disorder
theory, the width of the hopping should be independent of the hopping
distance and the molecular environment.

Considerable debate exists regarding the nature of charge carriers in
MDP and other organic solids of current technological interest, as the strong
thermal activation of the field dependent mobility µ shown from experiments
could arise equally well from a carrier’s interaction with phonons by polaron
binding, or from static properties of the material due to energetic and spa-
tial disorder [48]. The latter was the primary motivation underlying the
Gaussian disorder model (GDM) of Bässler [24] in which activated mobili-
ties arise for carriers hopping through a Gaussian density of transport states
with energetic width of σ ∼ 0.1eV, via Miller-Abrahams hopping. Multi-
phonon processes typical of polaron transport, are absent in this model. In
contrast, Schein and co-workers [2, 16] suggested that carriers were polaronic
and that crucial to the understanding of the experiments was an adiabatic
to nonadiabatic small polaron crossover.

Hilt and Siebbeles [50] considered both polaron and Miller-Abrahams
type jump rates for hopping motion of charge carriers in one-dimensional
disordered systems under the influence of an electric DC or AC field by using
Monte Carlo computer simulations. They found that charge carrier mobility
depends on time because of energy and frequency relaxation of the charge
carriers due to asymmetry of the jump rates. They mention that the time
and frequency dependence of the AC mobility (obtained from dielectric loss
measurements) provide more information on the charge carrier transport
mechanism than can be obtained from TOF measurements of mobility only.

Rackovsky and Scher [44] have studied the drift mobility of a molecular
polaron in the presence of an applied external electric field and Coulomb
traps. Their key result is that the nearly universal experimental behavior of
the mobility arises from the competition between the rates of polaron trap-
ping and release from a very low density of Coulomb traps. For a polaron
hopping in a molecular system with a Coulomb center and applied field they
have calculated the product of the average trapping time τ tr and the aver-
age release rate <, which is similar to the mobility ratio for semiconductor
type drift mobility,τ tr< = µ/µ0 [44]. The magnitude of the delay depends
on the depth of the carrier in the well. Thus, there is a spectrum of trapping
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and release times associated with localized states within a Coulomb center.
Rackovsky and Scher [44] suggest that one can associate the average trap-
ping/release time with an energy level range within the well. The choice of
this range, or more precisely, the ratio of the transition rates associated with
it, is a parameter of their theory. Rackovsky and Scher [44] showed that the
field enhances the trapping of the polaron at the Coulomb center, and that
this effect can be temperature-independent over a reasonable range. Thus
the hitherto inexplicable T0 term in the phenomenological expression for the
mobility (1) can be understood to arise from a similar E-dependence of <
and the trapping rate 1/τ tr. Equations (2) and (3) are consistent with this
physical picture: at low T , when escaping is difficult and trapping is easier,
the field dependence is governed by release (untrapping) the rate of which
should increase with field. At high T , where untrapping is more probable,
field-induced trapping leads to the behavior in (2).

On the base of results obtained by the rate spectrum analysis, which
enables the disentangling of the separate effects of trapping and release,
Rackovsky and Scher [44] conclude that it is plausible to attribute the non-
Arrhenius behavior of µ (E) to the effects of trapping time τ tr. The mobility
is not modeled directly by Rackovsky and Scher [44]. It is accounted rather
by the expression µ/µ0 = τ tr< = n/N , where N and n are the densities of
trapped N and mobile n charges, with n ¿ N and in order to study the
temperature and field dependence of the mobility, the dimensionless product
(τ tr<) is determined by the trapping (release) of a polaron into (out of) a
single Coulomb well.

Parris and coworkers [48] reported on experimental evidence for the ne-
cessity of polaronic concepts for the explanation of charge carrier motion
in organic materials and assumed carriers to be polarons moving in a dis-
ordered medium. They showed that in the presence of correlated disorder,
polaronic carriers with binding energies ∼ 50 − 500 meV and transfer in-
tegrals J ∼ 1 − 20 meV are completely consistent with the magnitudes of
observed field and temperature dependences of mobility and that mobilities
of MDP are entirely compatible with small polaron motion in a random
energy landscape provided it has spatial correlations of the charge-dipole
type.

5.3 Monte Carlo simulation techniques

Pautmeier and coworkers [55] used Monte Carlo simulations to study the
relaxation of a packet of charge carriers migrating in a Gaussian density of
sites of energy width σ. They established that the relaxation time determines
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the transition from dispersive to non-dispersive transport seen in a time of
flight signal and that dispersive transport occurs if the mean hopping rate of
an ensemble of charge carriers generated in a disordered system under non-
equilibrium conditions decreases as a function of time. Hopping was assumed
to be controlled by the intersite jump rates of the Miller-Abrahams form:

νij = ν0 exp

µ
−Γij∆Rij

a

¶ Ã
exp

³
− εj−εi

kT

´
, εj > εi

1 , εj < εi

!
(5)

incorporating the electrostatic potential generated between the site energies
εi and εj where ∆Rij = Ri − Rj and ν0 are, respectively, the distance
between the hopping sites and the characteristic hopping frequency, Γij is
the wave function overlap parameter and a is the lattice constant [55].

Borsenberger and coworkers [56] recorded the position and energy of the
carrier as a function of time, as well as the relevant variances, until the car-
rier reaches the collecting electrode, averaging over 100-150 carriers, and the
only quantity of interest was the average transit time. They also reported
that the negative slope in mobility vs. field dependence was found for small
fields from simulations for mobility received from average transient times.
When the mobility was determined from the intersection of tangents to the
photocurrent transients, the range, for which the logµ ∝ √E relation is
observed, was extended to lower fields 4 · 105 6 E 6 4 · 106 (V/cm). By
comparing the experimental results with Monte Carlo simulations, Borsen-
berger and coworkers [56] concluded that the observed behavior of mobility
is a signature of the simultaneous presence of diagonal and off-diagonal dis-
order and generalized their results providing a framework for determining
the magnitude of the relevant diagonal and off-diagonal disorder parameters
by analyzing mobility measurements.

Young [51] developed and applied the scaling law and obtained new
corrected formulae for the field and temperature dependences implied by
simulations for a fairly general class of hopping transport models in the GDM
of Bässler and co-workers. In his next work on the same theme Young [57]
underlines that in spite of the fact that the GDM of Bässler and coworkers
has had considerable success in accounting for the dependence of the mobility
of charge carriers on electric field strength and temperature, the assumption
of an accurately Gaussian DOS, used to interpret experimental data in terms
of the GDM, is nevertheless questionable. He concludes that within the
dipolar-lattice model the GDM is not generally an accurate description of
charge transport.
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5.4 The macrotrap model of charge transport

Transport is visualized by Kalinovski and coworkers [23] as multitrapping by
a quasi-discrete set of spatially extended neutral trapping domains (macro-
traps) identified with specific inhomogeneities in the sample, and by hop-
ping between isoenergetic randomly spaced sites disposed between macro-
traps. The additional assumption they made was that the DOS profile within
macrotraps is an exponential function which, in fact, determines the general
shape of the macrotrap potential. A field dependence of the mobility results
from a field dependence of the dispersion parameter. No Coulombic traps
are required to produce the observed field dependence [23].

The effect of extrinsic traps on the motion of charge carriers in an ener-
getically random hopping system characterized by a Gaussian - shaped den-
sity of states function of variance σ has been studied by Wolf and coworkers
[7] by Monte Carlo simulations and experiments on tri-p-tolylamine doped
PS containing different concentrations of trianisylamine, the known hole
trap. They show that the presence of a distribution of traps of the same
width but shifted from intrinsic DOS by an energy Et, does not change the
basic phenomenology of hopping transport, as revealed by the dependence
of the mobility on temperature and field and their effect can be accounted
for via the replacement of σ with an effective width of the DOS whose square
increases linearly with Et and the logarithm of the trap concentration.

Fishchuk and coworkers [29] describe the nondispersive charge-carrier
transport in a disordered organic material containing extrinsic traps by an
effective medium model. It describes charge transport in the presence of
traps more adequately than the conventional Hoesterey-Letson model, which
predicts an Arrhenius-type temperature dependence of the charge carrier
mobility, where the activation energy is simply the trap depth Et.

The calculations of Fishchuk and coworkers [29] support the notion that
the effect of traps can be quantitatively accounted for by the introduction
of an effective disorder parameter σeff depending on the trap depth and
concentration, valid for the whole concentration range. They show also
that both relaxation of the ensemble of majority charge carriers within the
combined intrinsic and extrinsic density of state distribution and the oc-
currence of trap-to-trap migration alter the µ (T ) dependence significantly.
Notably at lower temperature when the apparent activation energy can be-
come smaller than the trap depth Et, and µ (T ) is controlled by the width
of the distribution of trap levels. If it is narrower than that of the intrinsic
DOS, the relaxation of the charge carriers is diminished. As a result, µ (T )
dependence flattens and eventually the mobility in a system containing traps
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can exceed that of the undoped system [29].

5.5 Charge localization and transport in disordered
materials

According to Blaise [58] the problem of charge localization and transport
in disordered dielectric materials has not yet been solved completely. He
studied weak localization in the conduction band and its consequences for
conduction of electrons injected in insulating materials. He assumed that
interband electron transitions are negligible due to the large band gap and
impurities do not contribute to conduction as donors or acceptors. In highly
disordered insulators such as polymers, it was suggested that multiple trap-
ping is more appropriate for describing the conductivity than hopping be-
cause shallow trap states are so rapidly detrapped that the hopping motion
through trap states is negligible in comparison. The low drift mobility is
thus attributed to the time the carrier spends in traps. The long-term release
of the charge from deep traps interpretation is still questionable [58].

Blaise [58], following Anderson theory, accepts that disorder in solid in-
sulators produces localized states causing the charge localization. Blaise
based his description of localized states in the conduction band tail on the
Mott’s formalism to account for conduction properties of these materials.
The mobility edge Ec between localized and extended states is located in
the conduction band and is a function of the degree of disorder ratio Nc/N ,
where N and Nc are, respectively, the number of atoms and the number
of localized states per unit volume. For 10−3 < Nc/N < 10−1, Ec ranges
from ∼ 10−2 to ∼ 1 eV. Blaise deduced conduction from calculations of the
Fermi distribution of electrons in the extended and localized states of the
conduction band not considering the impurity band. Conduction involves
two processes: a hopping one through localized states below Ec with an
effective mobility µhop and a conduction process through extended states
above Ec with an effective mobility µext. Blaise claimed that when Nc/N
increases, µext decreases, whereas µhop increases and the total effective mo-
bility µ exhibits a minimum, the value of which depends on the extension
1/α of the wave function characterizing the localized states. He concluded
that for a low disorder, conduction is mainly due to extended states, whereas
for a high disorder (> 3 ·10−2) it is a consequence of hopping through local-
ized states. He concluded also that small variations of disorder around the
value Nc/N = 3 · 10−2 can change completely the type of conduction from
an extended state conduction to a hopping one when Nc/N changes from
Nc/N = 2 · 10−2 to Nc/N = 4 · 10−2. From the data obtained by Blaise
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for the temperature dependence of mobility up to 400oK it follows that the
extended state conductivity is favored at high temperature.

6 Fitting the experimental TOF transient data to
models

Scott and coworkers [59] have suggested that the crucial problem in analyz-
ing the mean mobility in disordered media was the absence of an analytical
expression for the time dependence of the current, which can be applied over
the entire experimental range.

The task of obtaining a proper parametric quantification of TOF tran-
sient currents is not easy since the induced current forms are usually quite
complicated and several mechanisms may account for the overall result.
Untill 1992 there was no analytical expression for the time dependence of
the current, which would be generally applicable over the entire range of
experimental interest [59]. Scott and coworkers [59], Mirchin and Peled
[21, 32, 33, 60, 61] and Hirao [14, 34] proposed similar models to describe
the observed transient current shapes. The various methods are described
below.

6.1 Analyzing photocurrent transients in terms of an effec-
tive normal velocity distribution

Scott and coworkers [59] have proposed a method for analyzing photocurrent
transients using two functions, one describing the current, as it would evolve
in a semi-infinite sample, and the other accounting for the arrival of carriers
at the collecting electrode. They used the Scher-Montroll fractional power
law to describe the current, which would flow if the sample were semi-infinite
s0(t) = A · t−(1−α) and reduced it by a factor that accounts for the arrival
of carriers at the collecting electrode:

s(t) = A · t−(1−α)
1− tZ

0

1

σIt21
√
2π
exp
− (1/t1 − 1/t0)2

2σI
dt1

 , (6)

where α is a phenomelogical fitting dispersion Scher-Montroll parameter,
0 < α 6 1, σI = σv/L is the standard deviation of inverse arrival times,
σv is the width of the velocity distribution, t0 = L/ hviis the mean transit
time. They used this functional form for the photocurrent transients to fit
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experimental transients for 200 different samples through 215 6 T 6 400K
and 1 6 E 6 120MV/m and obtained 0.65 6 α 6 1 and a relative width v

of the velocity v distribution 0.3 6 v = σv/ hvi 6 1 [59]. Their mobility
values were considerably lower by a factor of 2 and did not obey the Poole-
Frenkel form for the whole electric field range used.

6.2 Photocurrent transients’ formalism

Besides the mobility, there are other parameters, such as the charge distrib-
ution, the velocity distribution within the packet, and others, which describe
the charge transport in organic materials such as MDP, [14, 18, 21, 32—34,
60, 62].

The experimental procedure for measuring the average velocity using the
theoretical Photocurrent Transients Equation (PTE) was given by Hirao et
al (1995), where additional definitions for the transit time were introduced
and their influence on the mobility evaluation discussed. Only the logarithm
of the mobility calculated from the transit time as defined from the inter-
section of the asymptotes to the plateau and the trailing edge had negative
field dependence as reported first by Gill ([38] and thoroughly studied by
Peled and Schein [41].

A method of obtaining both the velocity v and the diffusion coefficient D
from the photocurrent transient has been developed by various researchers
[14, 18, 21, 33, 34, 61]. In [34] the following theoretical PTE was proposed:

J(t) =
qDn0

L
√
4πDt

"
exp

½
−(L− vt)2

4Dt

¾
− exp

(
−(vt)

2

4Dt

)#

−qn0v
2L

·
erf

µ
vt

2
√
Dt

¶
+Flag erf

µ
L− vt

2
√
Dt

¶¸
(7)

where n0, q and L are the number of holes, the electron charge, and the
thickness of the sample, respectively. erf(x) denotes the error function and

Flag =
½

1, L ≥ vt
−1, L < vt

. The equation is based on the fact that when a

carrier packet drifts at a constant velocity it may also spread by diffusion.
The mobility µa is calculated from the transit time defined as ta = L/v,
where v is the velocity defined by fitting the experimental data to the PTE
for Gaussian charge profile given by:

n =
n0√
4πDt

exp

(
−(x− vt)

2

4Dt

)
(8)
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or from the time for which the number of arriving carriers at the counter-
electrode is maximal, tr (i.e., the Gaussian packet peak arrival time). Usu-
ally the log of the mobility increased linearly with

√
E [34]. By fitting the

photocurrent transients to the PTE, v and D can be obtained simultane-
ously. The obtained velocity was independent of the film thickness and
showed no negative slope field dependence in the low electric field regime
[14]. They concluded that the fitting method is suitable to obtain the mo-
bility and tried to explain the behavior of µexp and the tail broadening
parameter Wexp using the PTE. By fitting data to this model they showed
that the experimental electric field dependence of the diffusion coefficient D
has a positive slope.

As mentioned by Hirao et al. [14], different kinds of mobilities can be
derived from various transit times: (a) the time ttr defined by the inter-
section of the asymptotes to the plateau and the tail of the transient, (b)
the time t1/2 a half of the photocurrent decay to its initial value at t = 0,
and (c) the ensemble average arrival time. However, only the logarithm of
mobility derived by the method (a) is proportional to the square root of the
electric field while using the log mobilities derived by the methods (b) and
(c) were proportional to the square root of the field only in the high electric
field region. They also reported experimental results that differ from the
above-mentioned simulation [14].

The time ttr corresponds to the time when the current begins to decrease
rapidly. If the carrier packet is generated as a thin sheet, the time ttr is ap-
proximately the arrival time of the earliest carriers at the counter electrode.
The earliest carriers are thought to be transported by a combination of drift
and forward diffusion. At the time ttr the sum of the drift length L and
the diffusion length LD is equal to the sample thickness l [21]. Hirao and
coworkers [14] tried also to explain the sample thickness dependence of the
measured mobility. Since the diffusion length LD is proportional to

√
t, its

contribution increases with the sample thickness decrease. Finally, µexp has
been shown to have in some cases a thickness dependence [1].

6.3 Modeling of TOF experiments with dispersion and
trapping

Our first step towards a better understanding of the charge transport in insu-
lating materials was the proof of the “Generalized Shockley-Ramo” theorem
for the displacement current of charge packets [21, 31, 60].

The induced TOF current was investigated analytically for the one-dimen-
sional case of a capacitor type charge transit device structure given in Fig. 3.
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Figure 3: Schematic plot of the a one-dimensional ‘sandwich’ configuration
for transit of a charge packet (box shape approximation) in TOF experiments
[33]

Using the Generalized Shockley-Ramo theorem developed by Mirchin
and Peled [21, 30, 32, 60], we combined the total packet charge, its center of
mass velocity and spreading velocities in an analytical result for the induced
current on the electrodes with trapping:

I(t) =



I0(t) =
qp0
L
· dξ
dt

·
1 +

1

2

dl (ξ)

dξ
− l (ξ)

2Lτ

¸
e−ξ/Lτ , 0 ≤ ξ ≤ L− lT

I0(t) · L− ξ

l (ξ)
·
1 +

1

2
· L− ξ

l (ξ)
· dl (ξ)

dξ
+

L− ξ − 2l (ξ)
2Lτ·

1 +
1

2

dl (ξ)

dξ
− l (ξ)

2Lτ

¸ , L− lT ≤ ξ ≤ L

(9)
where qp0, l0, ξ, Lτ denote, respectively, the initial injected charge, initial
charge packet thickness, the back plane moving coordinate ξ = (vcm− v0) · t,
and the characteristic trapping length Lτ = (vcm− v0) ·τ . The characteristic
trapping time is τ and L is the sample thickness. v0 is the spreading velocity
of the back and front planes of the charge packet with respect to its center
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of mass whose velocity is denoted by vcm. l(ξ) is the instantaneous effective
thickness of the spreading packet, and lT = l(ξ = (vcm− v0) · tT ) is the
thickness at t = tT , which is the arrival time of the leading edge of the
charge packet at the collector electrode. The spatio-temporal development
of the charge packet, l(ξ), may accommodate in principle any type of charge
packet spreading mechanism. However, the choice of a simple, symmetrical
and homogenous spreading form is given by Eq. (10):

l(ξ) = 2
v0

vcm − v0
ξ + l0 (10)

where l0 is the initial charge packet width, see Fig. 3.
A normalized form of Eq. (9) has been used for actual data fitting [33].

The normalization was made by designating I0 = qp0vcm/L i.e., the simple
Shockley-Ramo displacement current of an ideal device without trapping
and for a nondispersive infinitely thin packet of charge qp0 drifting with the
velocity vcm [31].

The DEASP:PC MDP system has been investigated by Mirchin and
Peled [30, 32, 33] by fitting the experimental TOF I(t) curves to Eqs. (9)
and (10) by using a simple one level trapping model. The electric field and
temperature dependencies of all above mentioned parameters µ, vcm, v0, τ ,
Lτ , lT for this particular MDP system (DEASP 20% and 50%) in PC were
found by least error minimization techniques. The T analysis gave a typical
value of activation temperature Te = Tcm ∼= 3900K, which corresponds to
about 0.34eV/atom. We found also a difference in the behavior of vcm and
v0, i.e., the velocities are similarly activated by temperature but differ with
respect to the field dependence behavior. Thus, the transport and spreading
mechanisms coincide only with respect to temperature activation and the
difference in the electric field dependence must be due to a different mecha-
nism of charge spreading. Indeed, as discussed in [34], based on simulations
of the disorder model, diffusion is assisted by electric field for organic insu-
lating materials and its behavior is similar to that of drift mobility obtained
in the disorder formalism given by Bässler [25, 63]. However, it was observed
[34] that at any specific temperature, lnµ is proportional to lnD. Thus one
may conclude that lnµ is related to ln vcm and lnD is related to ln v0 which
is also in concordance with the disorder formalism in MDP systems.

Relatively few works have studied experimentally trapping in MDP ma-
terials [23, 64]. This mechanism, however, is of interest since it has quite
a remarkable influence on charge transport in both semiconducting and in-
sulating systems. While mobility applies to the center of mass propagation
characteristics, spreading by diffusion combined with trapping can change

803



remarkably details of the charge carrier interaction processes with the host
matrix in transit. Trapping is involved certainly through its dependence on
the electric field and temperature and may explain the transiting carriers
concentration fluctuations in the sample.

The TOF experiments analyzed according to Eqs.(9) and (10) provide
thus a new formalism for the field-temperature dependencies during an effec-
tive one charge trapping time τ . Mirchin and Peled [33] observed that τ(T )
and tT (T ) intersect at one point (Tintersect = 255oK) showing that the trap-
ping and transit times at this particular temperature have the same value
while at higher temperatures τ(T ) is greater than tT (T ). That is why at
high temperatures, trapping in the specific MDP system, DEASP 20% and
50% in PC, can be neglected. This formalism supplied additional informa-
tion regarding the charge packet width in transit lT (ξ) and the characteristic
trapping length Lτ dependencies on E and T [33]. It was observed, for in-
stance, that the trapping length Lτ (E) and packet thickness at the collector
lT (E) are almost constant in the intermediate region of electric fields with
typical values Lτav ≈ 10−2cm and lTav ≈ 4 ·10−4cm. On the other hand, the
trapping length temperature dependence, Lτ (1/T ), exhibits a decreasing
exponential shape and the effective thickness of the spreading packet at the
collector lT (1/T ) is almost constant within the experimental error with a
typical value of lTav ≈ 4 · 10−4cm in the temperature range 227-385oK.

The data obtained by Mirchin and Peled [33] has been used also for
evaluating the diffusion parameter D estimated from the total packet width
lT at final transit time tT , when the charge packet exits at the collector
electrode. For this purpose one can use the carrier distribution in a spreading
charge packet given by (8) from which the estimation of the characteristic
packet width can be taken as the packet width at time tT , i.e., l2T ∼= 4DtT .
Using the experimental E and T dependences of lT and tT the following
expressions for the diffusion coefficient dependence on field and temperature
were suggested [33] :

D(E) =
l2T
4tT

=
l20T
4tte

exp
³
−2alTE + ate

√
E
´
at T = 293K (11)

D(T ) ≈ l2T
4tT

=
l2T0
4tTT

exp

µ
−2alTT

T
+

TTT
T

¶
for E = 4 · 105 V

cm
, (12)

where the following coefficients were obtained by parametric fits of the tran-
sit time and final charge packet width for electric field and temperature
variations:
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tT (E) = tte · exp(−ate·
√
E) with fitting constants tte = 9.7 · 10−3 sec

and ate = 8.1 · 10−3pcm/V
lT (E) = l0T · exp(−alT ·E) with fitting constants l0T = 5.2 · 10−4cm

and alT = 2.95 · 10−7cm/V
tT (T ) = tTT ·exp(−TtT/T ) with fitting constants tTT = 7.97 ·10−10 sec

and TtT = 42370K
lT (E) = l0T · exp(−alT ·E) with fitting constants l0T = 5.2 · 10−4cm

and alT = 2.95 · 10−7cm/V
The results obtained by Mirchin and Peled [33] when compared with

those obtained by Hirao and coworkers [18, 34], show a similar electric field
dependence for the diffusion coefficient D. In [34] the log of the diffusion
coefficient D increases with

√
E. However, while the temperature depen-

dence of the diffusion coefficient given by Hirao et al. [18] shows also a weak
proportionality to 1/T 2 with small slope on log scale, from (12) and [33] it
follows that it is proportional rather to 1/T .

7 Discussion and conclusions

A great effort has been exerted to develop analytical and numerical methods
explaining the experimental conductivity dependence on field and tempera-
ture in MDP since the advent of insulator based charge transport devices.
Most experimental results on MDP electrical transport considered in the
literature use almost solely the concept of electrical mobility borrowed from
semiconductor conduction theory. The electric field and temperature de-
pendencies of charge carriers mobility in organic and other non-crystalline
materials were always considered as the key to the understanding of the
peculiar electronic transport in these materials [1—3, 20, 53, 56].

Unfortunately, neither the field dependence nor the detailed temperature
dependence of MDP mobility established from TOF measurements and de-
scribed analytically by Eq. (1) can be universally explained by the existing
models based on charge diffusion, Coulombic spread, trapping or detrap-
ping. In disordered insulators like MDP, there is apriori no justification to
assume diffusive spatial spreading mechanisms since no experimental or the-
oretical indication about thermalized relaxation mechanisms have yet been
found. Transport in these materials is now widely assumed to be rather
discrete hopping [22, 40, 51] of charge carriers not screened by other charge
carriers in the medium. Thus we observe an entirely opposite behavior as
compared to semiconductors where carriers are screened, and behave like
free in conduction band scattered mainly by phonons and imperfections.
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We have reviewed the main trends of investigations, experimental and
theoretical, of the electric field, temperature and composition dependences
of mobility in such systems [1, 14, 26, 35]. The Gaussian disoder model
developed by Bässler [25] and verified later on by Dunlap [35] describes the
transport in MDP systems as a biased random walk among dopant molecules
with Gaussian distributed random site energies. In these theoretical investi-
gations it has been shown by using the energetic disoder approach that the
peculiarities of dipolar disorder can be taken into account to explain not only
the high field, but also the low field mobility behavior [27]. In particular [35],
the empirical characterization and analytical results for the one-dimensional
transport supports the idea that correlated disorder - Charge Dipole Interac-
tion is a necessary ingredient for obtaining field-dependent mobilities of the
Poole-Frenkel type. However, the experimental mobility whose logarithm
shows proportionality to the square root of the electric field [14] has not yet
been explained satisfactorily. Numerical investigations of hopping transport
in a disordered matrix were vigorously pursued over the next decade [35].
As a result, it has been shown that the disorder formalism may explain the
temperature and electric field dependences of the mobility in MDP providing
the disorder is sufficiently large [4].

For the specific DEASP:PC system experimental data, Mirchin and
Peled [33] fitted the data obtained from TOF experiments to an electrody-
namic formalism [30—32, 60, 61]. The new formalism based on the classical
model of charge propagation including deep trapping and spreading allows
one to use additional transport and spreading characteristics of the charge
packets from the current transients. The interesting results obtained from
fitting the experimental data to the new formalism are as follows. The veloc-
ity of charge packet spread v0 has a different field dependence as compared
to the center of charge packet mass velocity vcm, with an otherwise similar
temperature dependence. The thermal activation energy for both vcm and
v0 parameters was about 0.34 eV. However, for the electric field dependence
difference no mechanism has yet been proposed. τ and tT were found to
have a very similar field dependence, i.e., with similar slopes, while the tem-
perature dependence shows a crossover at a well defined temperature above
which the deep trapping characteristic time becomes larger than the transit
time across the device. Thus, one expects trapping to have a smaller influ-
ence on electrical transport at high temperatures. This result is interesting
since at high temperatures a diffusing Gaussian space charge distribution is
expected to be broadened while the indication is here quite different. The
characteristic trapping length Lτ and the final charge packet width lT are
almost constant as functions of electric field being a consequence of the in-
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verse dependencies of the velocities and characteristic times on the electric
field.

Finally the formalism developed by Mirchin and Peled [21, 30-32, 60, 61],
based on Shockley-Ramo’s treatment was described as a tool for analyzing
dispersive TOF currents in MDP.
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