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Abstract

Phononless plasmon-assisted transport through a long disordered
array of finite length quantum wires is investigated analytically. Two
temperature regimes, the low- and the high-temperature ones with
qualitatively different temperature dependencies of thermally activated
resistance are identified. The characteristics of plasmon-assisted and
phonon-assisted transport mechanisms are compared. Generically strong
electron-electron interaction in quantum wires results in a qualitative
change of the temperature dependence of thermally activated resis-
tance in comparison to phonon-assisted transport. At high tempera-
tures, the thermally activated resistance is determined by the Luttinger
liquid interaction parameter of the wires.

PACS: 73.63.-b,72.10.Di,73.23.-b

1 Introduction

It is a well established fact that the single-electron transport through a one-
dimensional system with random scattering is suppressed at zero tempera-
ture and infinitesimally small applied voltage [1]. The physical mechanism
of the suppression of transport is known to be the Anderson localization
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phenomenon, which is explained as a constructive interference of initial and
back-scattered waves that enhances the return probability after scattering
by an impurity potential. Eventually, the constructive interference leads
to the localization of a single particle wave function in a one-dimensional
disordered system. A natural conclusion follows, that suppression of the co-
herence of the single particle propagation leads to delocalization and favors
transport through the system. Indeed, at finite temperature electrons cou-
ple to thermally activated bosonic excitations in the environment (usually
phonons), which results in the decoherence of the electron motion and in
the thermally activated electron transport [2].

A basic theoretical question remains, whether the thermally activated
transport can be induced by electron-electron interactions alone, that is
without an external bath of bosonic excitations like phonons. The mech-
anism of a phononless thermally activated transport consists of dephasing
of the electron wave function by electron-electron scattering that results
from e-e interactions. In the case of decoherence by interactions, the role
of bosonic bath is played by the electron-hole pairs, or charge fluctuations,
that are excited thermally or in the result of electron-electron scattering.

Recently the problem of thermally activated transport in a disordered
one-dimensional wire with interactions has been addressed in several works
[3—5]. In the absence of disorder, a one-dimensional wire with interactions
is described by the Tomonaga-Luttinger liquid model. This model allows
exact treatment of the low-energy physics in the interacting system using
the bosonization technique [6, 7]. At the same time, it is known that the
Luttinger liquid is destroyed virtually by any small amount of random scat-
tering [8]. Therefore, in the localized regime that is dominated by disorder,
the Luttinger liquid description is inapplicable. The two abovementioned
limits suggest two approaches to the problem of thermally activated trans-
port. The first one is based on the description of one-dimensional wire as
a disordered Fermi liquid. In that approach, the interactions are treated
perturbatively. At low temperatures the conductance is found to be a dou-
ble exponential function of temperature σ ∝ exp{exp[(Tτ)−µ]} with τ being
a mean free time and µ being a parameter of order one [3], instead of the
well known thermally activated behavior [2]. The other approach treats the
localized system as a pinned charge density wave. The thermally activated
transport is described as a propagation of instantons through the system
[4, 5]. The theoretical description has then much in common with bosoniza-
tion. It is applicable for not too weak interactions. That description suggests
a thermally activated behavior of conductance similar to the variable range
hopping. Most importantly, an external bath of bosonic excitations with
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continuous spectrum is necessary to facilitate the transport in the approach
of [4], whereas the work [3] predicts a nonvanishing conductance even if the
one-dimensional wire is completely isolated from the environment.

Figure 1: Geometry of the model. The arrow shows the direction of the
current.

In the present paper we investigate phononless thermally activated trans-
port through a quasi-one-dimensional system formed by a parallel arrange-
ment of conducting wires (see Fig. 1). Each wire has a finite length L
and the transport direction is perpendicular to the wires. We show that
charge-density fluctuations (plasmons) in the array can act as the agent
promoting thermally activated transport, thus providing the possibility for
phononless inelastic transport. As the result of generically strong plasmon-
electron coupling in a quantum wire, the features of plasmon- and phonon-
assisted transport are qualitatively different. We provide a qualitative expla-
nation of plasmon-assisted transport, identify the transport regimes, where
the features of plasmon- and phonon-assisted transport are either similar or
substantially different, and derive analytic expressions for the temperature
dependence of the thermally activated resistance for a special model of a
strongly correlated disordered array of quantum wires. We show that for a
special kind of disorder introduced below, the plasmon localization length
can noticeably exceed the single particle localization length. Our results ap-
ply to the regime when the plasmon localization length exceeds the length
of the array.
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Hopping transport in the considered model is of much relevance to a
number of experimental setups, including quantum wire arrays in hetero-
junctions [9], carbon nanotube films [10], atomic wires on silicon surface [11],
and stripe phases [12]. At finite length of constituent wires, such systems
represent particular examples of granular arrays, where a one-dimensional
wire plays the role of a grain. Considered as a granular array, the array of
parallel quantum wires is rather peculiar because of the very long charge
relaxation time in a one-dimensional wire. Due to this peculiarity, the the-
oretical description of thermally activated transport in arrays of long quan-
tum wires requires taking into account the charge dynamics and treatment
of the interactions beyond the capacitive model adopted in recent theoretical
investigations of transport through disordered granular arrays [5, 13, 14].

2 Theoretical model

The model we formulate below is special, because it combines two seem-
ingly incompatible features: i) it is strongly disordered for single electron
transport; ii) it is much weaker disordered for transport of plasmons.

Consider a one-dimensional array of parallel identical quantum wires of
length L and diameter a placed regularly with the interwire distance d, LÀ
dÀ a. We investigate transport in the direction perpendicular to the wires
(see Fig. 1). The spectrum of low-energy plasmons in a single isolated wire
is equidistant with energies Ei,n =

πvi
L n, where L is the length of the wire,

and vi is the plasmon velocity along the wire i. For identical wires at regular
positions, the intra- and interwire interactions between the charge density
fluctuations do not change along the array. Then each localized plasmon
level broadens into a plasmon band with truly continuous spectrum, quite
analogously to the formation of electronic bands in the tight binding model.
The role of hopping in the tight-binding model for plasmons is played by
the matrix element of the charge-density interactions between neighboring
wires. The formation of plasmon bands is reflected by the dependence of the
plasmon velocity along each wire on the wave vector p along the array (that
is, perpendicular to the wires) v0 → u(p). The particular form of plasmon
dispersion depends on details of the interwire interactions, yet the function
u(p) should be periodic with a period of one Brillouin zone. That is why we
choose the specific form

up = v0 + v1 cos(πp), −1 < p ≤ 1. (1)

The chosen form of dispersion can be considered as the first two terms of
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the Fourier expansion of some general dispersion law. The plasmon energy
within a band centered around the level n is given by n(p) =

πup
L n.

2.1 Single particle localization length

Since we are interested in the single particle transport in the direction per-
pendicular to the wires, we consider in this section only the transverse com-
ponents of single particle wave functions assuming the factorization of the
wave function into the transverse and longitudinal (with respect to the di-
rection of the wires) parts.

Suppose the typical height of potential barriers between neighboring
wires is very large. Let us describe the array without interactions by a
tight-binding model. Then a single particle wave function has most of its
weight inside the wires. We approximate a Wannier wave function localized
in a single wire by the form

ψi(y) = ψ0

n
θ
³
y +

a

2

´
+ θ

³a
2
− y

´
+ e−λ|y|

h
θ
³
−y − a

2

´
+ θ

³
y − a

2

´io
.

(2)
Here and everywhere further y denotes the coordinate in the direction per-
pendicular to the wires, that is in the transport direction. Using the nor-
malization condition for ψi(y), the value of |ψ0|2 is found to be

|ψ0|2 =
λ

aλ+ 1
. (3)

In the absence of disorder and interactions the single particle motion is de-
scribed by very narrow energy bands with the dispersion law k = t cos(kd),
(−π

d < k ≤ π
d ). With the help of (2), the bandwidth t that equals the

hopping energy in the equivalent tight-binding model can be estimated as

t ≈ Hλd

aλ+ 1
e−λd, (4)

where λ describes the decay of a single particle wave function inside the
barrier of the height H,

λ ≈
r
2m

~2
H. (5)

Now let us introduce the disorder as random height of the energy barriers
between neighboring wires. Such a disorder induces fluctuations of the decay
parameter λ thus rendering t random. As a result, the single particle wave
functions become localized. In the one-dimensional case the single particle
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localization length ξ1 coincides with the mean free path lf = vF tf . The
mean free time tf is, in turn, related to fluctuations of the tunneling barrier
height

hδH(n)δH(n0)i = 1

2πν1tfd
δn,n0 . (6)

Here n and n0 denote the numbers of the wires adjacent from the left to
the barrier, and we assigned a length scale 1/d to the δ-function. ν1 is a
single particle density of states, which is given by ν1 =

1
td in the center of

the band. Now let us establish a connection between the mean free path lf
and the fluctuations δλ of the decay parameter of the wave function. Using
the relation (5), we obtain

δλ =

r
m

2~2H
δH. (7)

Further we solve (6) for τf and express δH through δλ with the help of (7).
In the result we obtain

lf =
λ
4
d3e−2λd

8πhδλ2(aλ+ 1)i . (8)

Imposing the condition for a single particle to be localized within two nearest
neighbor wires lf = d, we obtain for hδλ2i

hδλ2i = λ
4
d2e−2λd

8π(aλ+ 1)
. (9)

2.2 Plasmon localization length

The random height of interwire tunneling barriers affects the interwire charge
density interactions through the randomness of the transverse part of the
wave functions ψi. The matrix element of charge density interactions be-
tween neighboring wires with the numbers 1 and 2 (the direct part of

559



Coulomb interaction) is calculated as

V12 ∝
Z ∞

−∞
dy1dy2
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Z a/2
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+
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!
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e−2λ(|y1|+|y2|

|d+ y2 − y1| .

We took into account the exponential decay of wave functions inside the
barrier (for |yi| > a/2). For λd À 1 the main contribution to the matrix
element is given by the first term in (10) that relates to the interaction of
charge densities inside the wires. This term results in

Vi,i+1 ∼ a2|ψi|2|ψi+1|2/d, (11)

where

|ψi|2 =
1

a

Z a/2

−a/2
dy|ψi(y)|2. (12)

Note that, being integrated over the wire cross-section, the value |ψi|2 is
insensitive to random variations of the wave function across the wire. The
contributions from other terms in (10) are suppressed as 1/λ. The effect of
the random potential barrier on the quantity |ψi|2 can be estimated using
the normalization condition for the single particle wave function

|ψi|2
µ
a+ 2

Z ∞

0
e−2λiydy

¶
= 1. (13)

Solving for |ψi|2 we obtain

|ψi|2 =
λi

aλi + 1
. (14)

The randomness of potential barriers is encoded in the decay factor λi.
Setting in (14) λi = λ+ δλi, we obtain the fluctuation of |ψi|2 in the form

δ|ψi|2 =
δλi

(aλ+ 1)2
. (15)
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Furthermore, using (11) we estimate the fluctuation of the matrix element
of the interaction as

δVi,i+1 ∼ 2λδλia
2

d(aλ+ 1)3
. (16)

In the bosonized form, the density-density interaction between neighbor-
ing wires reads

Hi,i+1 =

Z L

0
Vi,i+1 (∂φi(x))

¡
∂φi+1(x)

¢
. (17)

Using the mode expansion of the bosonic fields φi(x), φi+1(x) [6]

φi(x) = −
X
q

1

nq

³
e−iqxb̂i,q + eiqxb̂†i,q

´
(18)

together with the relations q = π
Lnq, ωq = sq, where s is the phase veloc-

ity of a plasmon along the wire, we rewrite (17) in the form of a hopping
Hamiltonian for the bosons represented by operators b̂i,q, b̂

†
i,q

Hi,i+1 = Vi,i+1
X
q

2πωq
s

³
b̂†i,q b̂i+1,q + b̂†i+1,q b̂i,q

´
. (19)

As a result of random interwire interactions, the plasmons become lo-
calized in the direction along the array. The plasmon localization length
can be evaluated as ξp = ugrτ

ω
p , where τ

ω
p denotes the mean free time of a

plasmon mode with frequency ω, and ugr is the group velocity of plasmons.
The plasmon mean free time is related to fluctuations of the matrix element
of the interwire charge density interactionsµ

2πωq
s

¶2
h(δVi,i+1)2i = 1

2πdνpτωp
, (20)

where νp =
L

π2v1n
is the plasmon density of states in the middle of the

band n. In turn, the velocity v1 is related to the average value of the
charge density interactions V = hVi,i+1i. The interaction V i,i+1 plays the
role of the hopping matrix element in the tight binding model for charge-
density excitations. Then from the dispersion law of the lowest plasmon
band p =

π
L(v0 + v1 cos(πp)) we infer

V =
π

L
v1. (21)
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Furthermore, the plasmon group velocity is given by

ugr =

µ
1

d

¶
d p

dp
=

π2d

L
v1. (22)

By using (11) and (14), the average interaction strength V can be expressed
as

V ∼ λ2a2

d(aλ+ 1)2
, (23)

where hδλ2i ¿ λ2 is assumed. Solving (20) for τωp , expressing the plasmon
density of states for the first plasmon band n = 1 through the average
interaction strength V with the help of (21), we obtain the expression for
the plasmon mean free time in the form

τωp ≈
³ s

2πω

´2 d(aλ+ 1)4
8hδλ2ia2 . (24)

Now let us evaluate the ratio between the plasmon localization length lp
and the electron localization length d. The condition of strong electron
localization on the length d determines the value of hδλ2i as given by Eq. (9).
Substituting this value of hδλ2i into the expression (24) and multiplying by
ugr/d with ugr given by (22), we finally obtain

lp
d
≈ s2(aλ+ 1)4

4ω2λ
2
d2

e2λd. (25)

This result agrees qualitatively with the evaluation of plasmon correlation
length in a randomly inhomogeneous Luttinger liquid by Gramada and
Raikh [15]. Eq. (25) shows that the condition lp/d À 1 can be formu-
lated as

λdÀ ln

·
2ωλd

s(aλ+ 1)2

¸
. (26)

Eq. (26) defines the regime, where the plasmon localization length exceeds
very much the electron localization length. If, additionally, lp exceeds the
length of the array in the transport direction (orthogonal to the wires), the
plasmon bands can be applied to describe the plasmon spectrum in the array.

3 Resistance of a disordered array

The resistance of a long disordered one-dimensional array is determined by
so-called breaks, the junctions between two neighboring wires with expo-
nentially high resistance [16]. Let us denote the energy cost to transfer an
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electron over the break as Ea. To facilitate the transport over the break, the
energy Ea should be acquired by absorption of a bosonic excitation. For two
isolated wires forming the break, the matching condition Ei,n = Ea cannot
be satisfied for arbitrary Ea because of discreteness of Ei,n. However, due to
the charge-density interwire interactionHint =

P
i

P
n,n0 V

nn0
i,i+1ρ̂i(n)ρ̂i+1(n

0),
where n, n0 mark the plasmon modes, the energy can be transferred between
excitations localized in different wires. In the regime discussed in the previ-
ous section the plasmon localization length exceeds the length of the array.
Then the plasmon band description of the plasmon spectrum is applica-
ble. Treating the interwire charge density interaction perturbatively, we can
write the transition rate caused by the absorption of a plasmon similarly to
a transition caused by the absorption of a phonon using the Fermi golden
rule [2],

γ ∝
Z

dp
X
n

∞X
m,k=0

|Vn(p)|NB( n(p))f (−Em) [1− f (Ea +Ek)]×

δ ( n(p)−Ea −Em −Ek) . (27)

Here Vn(p) is the strength of interwire charge density interaction for the
plasmon mode n, NB( n(p)) is the occupation number of the plasmon mode,
f(Em) denotes the Fermi distribution and describes the occupation of the
m-th single-particle energy level in the wire, Em =

πv0
L m. For narrow plas-

mon energy bands, the perturbative approach suggests that if the energy
Ea lies in the gap between the plasmon bands, hopping over the break is
blocked. This suggestion turns out to be wrong because of a conceptual dif-
ference between the plasmon and phonon transport mechanisms. Whereas
the phonons represent a bath of bosonic excitations that is independent of
electrons, the plasmons are “made” of electrons themselves. Consequently,
while the electron-phonon interaction can generally be treated perturba-
tively, the perturbative treatment of plasmons is possible only under special
conditions. The applicability of the perturbative treatment of plasmons is
determined by the relation of two time scales: the characteristic time of
plasmon dynamics tp and the characteristic time of a single electronic hop
th. If the Coulomb interaction in a grain is well-screened or plasmons are
strongly localized, then tp is the characteristic relaxation time of a plasmon
excitation within a single grain. For tp ¿ th the plasmons can be neglected
in transport. The description of interactions thus reduces to the capacitive
model [5, 13, 14]. For the delocalized undamped plasmons, the time tp is
associated with the formation of an extended in space plasmonic excitation.
In that case, tp ¿ th correspond to the regime of a strongly nonlinear cou-

563



pling between plasmons and electrons, and the perturbative treatment of
plasmons is incorrect. Plasmons in one-dimensional wires represent a pro-
found example for that regime. In particular, the relation tp ¿ th is always
fulfilled at the break. For the model considered in this paper, tp ∼ L/v1.
As we show below, due to the strong electron-plasmon coupling, the nonlin-
ear effects lead to the creation of plasmon complexes with energies covering
the whole spectrum continuously, even though the plasmon bands initially
are very narrow. This, in turn, leads to plasmon-assisted transport with
a temperature dependence qualitatively different from the case of phonon-
assisted transport. In the regime tp À th, the effective interaction time is
limited by th. Then the plasmon dynamics is essentially independent of the
electron dynamics and, in the case of a continuous plasmon spectrum, the
plasmon-assisted transport is quite analogous to the phonon-assisted one.

The resistance of the array is calculated along the lines of Ref. [16]. Let
us parametrize the tunneling matrix element between two wires in the form
ti,i+1 = exp(−|yi,i+1|/d). The parameter y can be associated with an effec-
tive distance between the two wires. This effective distance is random, its
distribution follows from the distribution of the heights of potential barriers.
Since a break, being a junction with exponentially large resistance, is not
shorted by other resistances connected in parallel, we can write the resistance
of a break in the form R1 = R0 exp[2|yi,i+1|/d+ f(Ea, T )]. Here Ea denotes
an additional energy to transfer an electron over the break. We remind that
the disorder enters the model only as a random distribution of energies Ea

and effective distances yi,i+1. The function f(Ea, T ) accounts for the effect
of thermally activated plasmons on the resistance of the break. According
to Ref. [16], the probability density ρ(u) for the resistance R/R0 = eu is
proportional to e−gA, where A is the area in the (y,Ea) phase space that re-
sults in the resistance eu, and g is the linear density of localized one-particle
states. The resistance is calculated as R = R0Ly

R∞
0 du eu−gA(u), where Ly

is the length of the array. Therefore, in order to calculate the resistance of
the array in the localized regime, we have to obtain an expression for the re-
sistance of the break R1. Since the break is not shorted by other resistances,
we conclude R1 = 1/σ1, where σ1 is the conductance of a break. Assume
that the break is formed by a junction between the wires with numbers 0
and 1. We take the position of a pinhole connecting the two wires as x.
In the linear response approximation the current through the break I1 is
determined by the correlation function [19]

X(τ) = |t01|2
D
Tτ

³
Ψ0(x, τ)Ψ

†
1(x, τ)Ψ1(x, 0)Ψ

†
0(x, 0)

´E
(28)
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that characterizes the probability of a single hop over the break, X+(τ) =
X(τ > 0) and X−(τ) = X(τ < 0). Here t01 is the tunneling matrix element.

A unique feature of the chosen model is the applicability of the bosonized
description that allows exact treatment of interactions and hence nonpertur-
bative treatment of plasmons. Precisely, the plasmon dynamics is described
by the action

S =

Z 1

−1
dp

Z β

0
dτ

Z L/2

−L/2
dx

2Kp

½
1

up
|∂τΘp|2 + up|∂xΘp|2

¾
, (29)

representing a finite size generalization of the sliding Luttinger liquid model
[18]. The relation of the plasmon velocity up and the Luttinger liquid con-
stant Kp with inter- and intrawire interactions has been calculated in [18].
A fermion annihilation operator in the wire n, Ψ̂n(x), is represented as

Ψ̂χ
n(x) ∼ F̂χ

n exp

·
−i
Z 1

−1
dpφχp (x)e

−iπpn
¸
, (30)

where χ = R,L denotes the chirality, φχp (x) is a chiral bosonic field, and F̂
χ
n

is a Klein factor. The chiral field φχp is, in turn, expressed through the field
Θp(x) and its dual Φp(x), φR,Lp (x) = (Θp(x)±Φp(x))√π. In the bosonized
representation (30), the correlation functionX(τ) factorizes in the correlator
of Klein factors and the correlator of bosonic exponents that we denote as
Xb(τ). The time dependence of the Klein factors Fn,χ(τ) is given by the
ground state energy of the wire n that includes the capacitive interaction
between the wires. Thus the correlator of the Klein factors is proportional
to e−Eaτ . Denoting the correlator of bosonic exponents as

Xχχ0
b (τ) =

D
Tτ

³
e−iφ0χ(0,τ)eiφ1χ0(0,τ)e−iφ1χ0(0,0)e−iφ0χ(0,0)

´E
, (31)

we can cast the expression for the current into the form

I1(V ) = − e
~

Z ∞

−∞
dt× (32)X

χ,χ0=L,R

h
ei(ω+Ec)tXχχ0

b− (τ = it+ 0)− ei(ω−Ec)tXχχ0
b+ (τ = it+ 0)

i
.

Here χ,χ0 = R,L denote the chirality of corresponding boson field. We
assume the size of the tunneling region along the wire much larger than
the Fermi wave-length. Then the terms with equal chiralities, χ = χ0, give
the major contribution to the current (32). Leaving only those terms and
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noticing that the contributions form the modes with left and right chiralities
to the tunneling current are equal, we can write the conductance of a single
junction as

σ1(V ) =
e2

~

"
d

dω
Xb(ω)

¯̄̄̄
ω=−Ec

− d

dω
Xb(ω)

¯̄̄̄
ω=Ec

#
. (33)

Substituting the explicit form of the correlator of free bosonic fields, assum-
ing a symmetric form of the dispersion u(p) = u(−p), we finally cast the
correlator (31) to the form (0 ≤ τ ≤ β)

Xb+(τ) = exp (− hκpSp(τ , a)i] , (34)

where κp = Kp + 1/Kp,

Sp(τ , a) =
∞X

m=0

n
ln sinh

hπup
2L

((m+ 1)β − τ)
i
+ ln sinh

hπup
2L
(mβ + τ)

i
− ln sinh

hπup
2L

((m+ 1)β − a)
i
− ln sinh

hπup
2L
(mβ + a)

io
, (35)

and the average over the plasmon wave vector p is defined by

h·ip ≡
Z 1

0
· (1− 2 cos(πp) + cos(2πp)) dp.

For −β < τ < 0 the correlator acquires the form

Xb−(τ) = exp [− hκpSp(−τ ,−a)i] . (36)

In Eqs. (34) and (36), the zero temperature result is given by the terms
in (35) with m = 0, whereas the terms with m > 0 give the temperature
correction.

4 Resistance at low temperatures

To analyze the resistance at low temperatures, it is convenient to separate
the zero temperature contribution to the current in Eqs. (34) and (35)
explicitly. Then the expression for the current can be written as

I(eV ) ∝
Z ∞

−∞
dω0J0(eV + ω0)Z(−ω0). (37)
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Here J0(ω) ∼ δ(ω − Ea) − δ(ω + Ea) defines the zero-temperature current,
whereas the influence of thermally activated plasmons is contained in the
factor Z(ω) that is given by the Fourier transform of

Z(t) = exp

−*κp X
σ=±1

∞X
m=1

ln
³
1− e−

πup
L
(mβ+iσt)

´+
p

 . (38)

Further we assume the coupling constant to be p-independent, κp = κ, and
use the simplified dispersion law (1). Note that in approximate evaluations
it is much more important to keep the p-dependence of the velocity up
that reflects the formation of plasmon bands than the p-dependence of the
coupling constant κp. To lowest order in p-dependent terms, the latter just
leads to the averaging of the single Luttinger liquid result over the coupling
constant. The basic average to be used in subsequent calculations reads

he−bupip = e−bv0
·
I0(bv1) + (1− 1

bv1
)I1(bv1)

¸
, (39)

where b = (mβ ± it)π/L, and Iν(z) denotes the Bessel function of complex
argument. For large times t, (39) gives asymptotically

he−πup
L
(mβ±it)ip ≈

s
2L

π2|v1|(mβ ± it)
e[−

π
L
w(mβ±it)], (40)

where w = v0 − v1. Despite being obtained for v1 < v0, (40) is essentially
nonperturbative in v1. The relevant values of the transport time are re-
stricted by the hopping time τh. For v1|mβ ± iτh| < 1 the correlations
giving rise to plasmon bands do not develop, and the short time expansion
of (39) has to be used instead of (40). The latter is equivalent to the per-
turbative treatment of plasmons, leading to a result similar to the phonon
mechanism of hopping.

At low temperatures, T ¿ πw
L , the major contribution to Z(t) is given

by the term with m = 1. Leaving only that term, expanding the logarithms,
and substituting (40) in (38), we obtain

Z(ω) ≈
∞X

n,l=0

2κl+n

n!l!

µ
2L

π2|v1|
¶n+l

2

e−β(
πw
L
(n+l)+|ω− ln|) ×

|ω − ln|
ν
2
−1 sin

¡
πν
2

¢
Γ
¡
1− ν

2

¢
(2β)

l+n−ν
2

, (41)
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where ln(ω) =
πw
L (l − n), and ν = l, n for ω − ln ≷ 0, respectively. Each

term in (41) describes a thermal excitation of a multiparticle plasmon com-
plex with a continuous density of states. The plasmon complexes described
mathematically by (41) form the bath of bosonic excitations that facilitate
transport over the break. Higher values of m in (38) would correspond to
excitations involving progressively more plasmon modes. The leading terms
in (41) at low temperatures are given by l, n = 0, 1. Those terms result in
the leading low-temperature contribution to σ1 in the form

σ1 ≈ e2

~
κ2LΓ

¡
1
2

¢
√
2π2|v1|T

³
|βEa|−3

2 + 2|βEa|− 1
2

´
e−β(Ea+

2π
L
w). (42)

Further calculations closely follow Ref. [16] leading to the temperature de-
pendence of the resistance

R ∝ T 2 exp

·µ
1

2gdT
+

πw

LT

¶¸
. (43)

For comparison, in the case of phonon-assisted transport in the same model,
as well as by a perturbative treatment of the plasmon-electron interactions,
the preexponential factor in (43) goes like T 1/2.

5 Resistance at high temperatures

At high temperatures, when T À πw
L , the temperature broadening exceeds

the interlevel separation in a single wire. To analyze the temperature de-
pendence of resistance in that regime, it is convenient to rearrange the sum
over m and σ in (35) with the help of the Poisson summation formula

S ≡
X
σ=±1

∞X
m=1

ln
³
1− e−

πup
L
(mβ+iσt)

´
=

∞X
m=−∞

ln

Ã
sinh

£πup
2L (mβ + τ)

¤
sinh

£πup
2L (mβ + a)

¤! = Z ∞

−∞
dx ln

Ã
sinh

£πup
2L (βx+ τ)

¤
sinh

£πup
2L (βx+ a)

¤!+
2
∞X
k=1

Z ∞

−∞
dx cos(2πkx) ln

Ã
sinh

£πup
2L (βx+ τ)

¤
sinh

£πup
2L (βx+ a)

¤! .

(44)

The last line of (44) has been obtained using the Poisson summation formula.
After rescaling the integration variable in the integral over x as y = πup

2L βx,
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we obtain

S =
2L

πβup

Z ∞

−∞
dy ln

Ã
sinh

£
y +

πup
2L τ

¤
sinh

£
y +

πup
2L a

¤!"1 + 2 ∞X
k=1

cos

µ
4kL

βup
y

¶#
. (45)

Integrating by parts in each term with a given k, we finally obtain

S =
∞X
k=1

Sk, (46)

Sk =
1

k

·
cos

µ
2πk

a

β

¶
− cos

µ
2πk

τ

β

¶¸
coth

µ
2πkL

βup

¶
. (47)

Let us rearrange the sum for S in form of a perturbative expansion around
the result for a Luttinger liquid of infinite length. To this end we note, that
if we replace coth

³
2πkL
βup

´
= 1 for all k, then the sum over k reads

∞X
k=1

Sk ≈ ln
¯̄̄̄
sin(πτ/β)

sin(πa/β)

¯̄̄̄
, (48)

which is the result for the bosonic correlator in infinitely long Luttinger
liquid. Therefore, the expression for S can be written in the form

S = log

¯̄̄̄
sin(πτ/β)

sin(πa/β)

¯̄̄̄
+
∞X
k=1

1

k

·
cos

µ
2πk

a

β

¶
− cos

µ
2πk

τ

β

¶¸·
coth

µ
2πkL

βup

¶
− 1
¸
.

(49)
Here the first term is the infinite length result, and the sum over k denotes
the corrections due to a finite length of the wire L. For large argument of
coth,

³
2πkL
βup

´
À 1, the k-correction decays as 1

k exp
³
−4πkLβup

´
. Further cal-

culation is performed for the zero order term in 1/L expansion. Evaluating
the Fourier transform of Xb(τ) = e−hκpS(τ)ip and performing the analytical
continuation to real frequencies, we obtain

d

dω
Xb(ω) ≈ −i(2πa)

κ

2π2βκ
sin(πκ/2)Γ(1− κ)

Γ
³
κ/2 + iβω2π

´
Γ
³
1− κ/2 + iβω2π

´ ×
·
ψ

µ
κ/2 + i

βω

2π

¶
− ψ

µ
1− κ/2 + i

βω

2π

¶¸
. (50)

The conductance of a single junction is then calculated by (33).
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For βEc
2π ¿ 1 we get approximately

f(T,Ea) ≈ ln
µ
βEa

π
V 0(0)

¶
, (51)

where V 0(0) is the derivative dV (x)/dx|x=0 of the function

V (x) =
Γ(κ/2 + x)

Γ(1− κ/2 + x)
[ψ(κ/2 + x)− ψ(1− κ/2 + x)] . (52)

One can see that the conductance of a single junction does not fluctuate
strongly with the additional energy Ea. Therefore, the resistance of the
array is not determined by the resistance of a single break, but is rather
given by the average over the resistances of all junctions. The fact that the
leading contribution to the conductance at high temperatures is given by
the result for infinitely long wires implies that the coherence of the single
particle motion is broken already by a single hop between two neighboring
wires. The latter justifies the averaging over the all junctions in calculation
of the resistance. In the result, the expression for the resistance can be
written as a Drude formula with the interaction and temperature dependent
mean free time τf . The expression for the mean free time can be organized

as an expansion in powers of the small parameter e−
4πLT
w . At a typical

charging energy Ēa > T , the leading term in the expression for the mean free
time is temperature independent, τf ∝ 1/hE2−κa i. For comparison, phonon-
assisted transport in that temperature regime still has a thermally activated
character with the preexponential factor T−1/2 in (43). At temperatures
even larger than the typical charging energy, Ēa < T , τf exhibits the power-
low temperature dependence typical for transport across a sliding Luttinger
liquid, τf ∝ T 3−κ/hEai [18]. Therefore, at high temperatures, the mean
free time is determined by the Luttinger liquid interaction parameter κ.
The resistance for phonon-assisted transport in that regime is given by a
Drude formula with the logarithmic temperature dependence of the mean
free time τf ∝ lnT .

6 Conclusion

In conclusion, we demonstrated the possibility of plasmon-assisted inelas-
tic transport in the particular case of a disordered granular array, an array
of parallel quantum wires. The chosen specific model of a one-dimensional
array enabled us to calculate analytically the preexponential factor of the
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thermally activated resistance at low temperatures and investigate differ-
ences between the phonon- and plasmon-assisted mechanisms of transport.
Due to large charge relaxation time in a wire, the plasmon-electron interac-
tion has to be treated nonperturbatively. In the result, thermally activated
resistance has qualitatively different temperature dependence for plasmon-
assisted transport as compared to phonon-assisted transport.

Our results show that the capacitive model used for the description of
transport in granular arrays [5, 13, 14] is inapplicable for that particar kind
of array. The power law dependence of the Drude mean free time in the
hight temperature regime is in a general agreement with findings of the re-
cent work [3]. At the same time, we still find a typical thermally activated
behavior of resistance at low temperature, although with a modified preex-
ponential factor. Since in the considered regime the plasmons are effectively
delocalized, the low temperature regime of [3] with doubly exponential tem-
perature dependence of conductance remains out of the scope of present
investigation.

Despite the specific quasi-one-dimensional geometry of the grains in this
model, the present investigation is believed to be of a general importance
for granular arrays with delocalized or weakly localized plasmons.

The author is grateful to M. Raikh, who initiated this work, for numerous
illuminating discussions. The author appreciates fruitful discussions with
D. Pfannkuche and valuable comments of I. Gornyi and S. Kettemann.
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