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Abstract

We investigate the relaxation of excitations in a strongly disordered
ensemble of two-level-systems (TLS). A novel nonphonon mechanism
destroying the Anderson localization in strong external fields is re-
sponsible for the relaxation. The TLS are supposed to interact via the
dipole-dipole interaction that can be either of electrical or of elastic ori-
gin. An external field of low frequency and high amplitude coherently
changing the TLS energy splitting is shown to control the relaxation.
The case of adiabatic relaxation is considered. A concept of dressed
excitation is introduced which allows us to simplify the analysis of re-
laxation phenomena. This concept is shown to lose meaning due to the
spectral diffusion if the temperature is not low enough. In this case,
the relaxation is treated in terms of initial TLS and is governed by the
spectral diffusion. A crossover between these two regimes is revealed.
In both cases the relaxation rates are surprisingly the same. The field
and temperature dependencies of the excitation lifetime and the phase
coherence time are found. The relation with the recent experimental
data on ultra-low temperature relaxation in glasses is discussed and
shown to support the results obtained.
PACS: 61.43.Fs, 77.22.Ch, 75.50.Lk
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1. Recently, the field induced-relaxation of excitations at low and ultra
low temperatures in disordered media, in particular, in dielectric glasses, has
become a matter of interest for both theoreticians and experimentalists [1 -
4]. For a long time the standard model of noninteracting two-level-systems
(TLS) [5] was a good background for the interpretation of low temperature
experimental data available for glasses [6]. The spectral diffusion phenom-
enon became the starting point of involving the interaction between the TLS
inherent in disordered materials. Following Black and Halperin [7], it has
been assumed for a long time that spectral diffusion is the only manifestation
of this interaction. The investigations in the last decade, both experimental
and theoretical, evidence that the dipole - dipole TLS interaction is respon-
sible for many physical ”universal” properties of a disordered system (i.e.,
quasiindependence of their chemical composition) [8, 9]. In particular, this
interaction explains the relaxation properties at ultra low temperatures, e.g.,
the quasilinear temperature dependencies for the inverse lifetime of elemen-
tary excitations τ−11 and dephasing rate of these excitations τ−12 [10 - 12]. In
spite of the fact that involvement of the dipole - dipole interaction provides a
good qualitative explanation of experimental data, an essential quantitative
disagreement between the theory and experiment still remains.

The problem of the relaxation of excitations in the ensemble of interact-
ing TLS in a strongly disordered system is closely connected with Anderson
localization [13]. The localization is known to occur in the discrete problem
if the transition amplitude ∆0 coupling two nearest TLS is small in com-
parison with the mismatch ∆ of the energy splitting at these TLS. In other
words, if the parameter ∆0/∆ is small enough, an excitation cannot hop
between the sites. Let an alternating external field with the frequency ω
be applied to the system. The disorder is no longer a static one since the
energy level mismatch becomes time-dependent: ∆̃ = ∆+ a cos (ωt). If the
amplitude of interaction between the field and the TLS a is large enough,
parameter ∆̃ vanishes periodically. As a result, the parameter ∆0/∆̃ be-
comes large from time to time and the strong coupling between the sites
takes place, i.e., resonance occurs as ∆̃ ≤ ∆0. Therefore, the excitation can
hop between the sites. According to the Landau-Zener approach, such hop-
ping has a probability close to unity if the time evolution of ∆̃ is adiabatic,
i.e., ∆20 ≥ aω. In the opposite nonadiabatic case, ∆20 ≤ aω, the hopping
probability is ∆20/aω(see, e.g., [14]). In this paper, we will consider only the
case of adiabatic relaxation.

The larger the number of sites strongly coupled to each other, the stronger
is the tendency to delocalization. In the static case this leads to the require-
ment of a slow spatial decrease of the hopping amplitude. The delocaliza-
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tion is realized if the hopping amplitude decays with a distance as 1/Rα with
α < 3 [13]. The most interesting case α = 3 relevant to the long-range elastic
or electrical dipole-dipole interaction between the defect centers is discussed,
in particular, in [15, 16, 10, 12]. It was shown [10, 12] that in an amorphous
dielectric the delocalization of one-particle excitations is practically absent
even within the framework of anomalous diffusion [16].

In the present paper we consider the general problem of the influence
of the external alternating field on the evolution of excitations in strongly
disordered media in the case α = 3 widely discussed recently in literature
[15, 16, 10, 12]. If the ratio a/ω is large enough, the propagating modes are
shown to appear. The results obtained are applied to the investigation of
the relaxation in TLS interacting via the dipole-dipole interaction.

On the other hand, the problem, in general, is of a special interest for
the interacting TLS inherent in amorphous materials. The ratio a/ω is large
in a majority of the experiments dealing with the measurement of the TLS
response with applying the external alternating acoustic or electromagnetic
fields (see, e.g., [6]). The results obtained manifest that the relaxation prop-
erties are vastly influenced by the field.

2. Consider an ensemble of TLS. The Schrödinger equation for a single
excitation can be presented in the form (~ = 1)

iḃi = eibi +
X
j

Uijbj . (1)

Here bi is the amplitude of the excited state at the site i, ei is the excitation
energy for the corresponding TLS, and Uij is the hopping amplitude between
sites i and j. The energies and site locations are random.

Usually, the pseudo-spin 1/2 representation is used to describe the in-
teracting TLS in an amorphous solid [5]. Within the framework of this for-
malism, bi corresponds to the upper projection of spin Sz and (see [10, 12])

Uij =
uij
R3ij

∆0i∆0j
εiεj

, εi =
q
∆20i +∆

2
i . (2)

Here ∆0i and ∆i are the TLS tunneling amplitude and the asymmetry in
energy, respectively. The subsystem of ”active”, or resonant TLS effectively
responsible for the dynamics consists of the TLS with ∆i ≤ ∆0i. For this
subsystem, the factor ∆0i∆0j

εiεj
is close to unity and can be omitted. Dispersion

of the parameter uij contributes no additional randomness and without loss
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of generality one can assume for simplicity |uij | = U0. Then, considering
only the subsystem of ”active” TLS, we put

|Uij | = U0/R
3
ij (3)

and assume the standard uniform density distribution for the energy levels
P (ε) = P0. At sufficiently low temperatures a vast majority of TLS are in
their ground states whereas only a few of them is excited. The excited TLS
are separated by long distances, and their interaction can be ignored. Equa-
tion (1) implies this fact and describes an evolution of elementary excitation
in the TLS system.

The excitation initially created at the site i can leave it for the site j if
the resonant condition is fulfilled [16, 10, 12]

|ei − ej | ≤| Uij | . (4)

The probability to find a resonant neighbor at the distance R from the site
i is P0

¡
U0/R

3
¢
d3R. The total number of sites j between two concentric

spheres of radii r1 < Rij < r2 centered at the site i, which obeys Eq. (4),
can be estimated as (see [16, 10])

W (r2, r1) ≈ P0

Z r2

r1

d3R |U (R)| ≈ χ ln

µ
r2
r1

¶
,

χ = 4πP0U0. (5)

Below we investigate the case of strong localization when the parameter
χ ¿ 1. In particular, in amorphous solids the dimensionless parameter
P0U0 < 10−3 (see [12], for recent review). Therefore, the total number of
resonant sites is W (L, rmin)¿ 1 for any reasonable size of a sample L and
minimum inter-site distance rmin. This means that, whichever the energy
and position of the site are, an excitation originally created at the site i
never leaves this site.

3. Consider the effect of alternating field on the energy spectrum of
excitations (see [17]). Due to the field, the energy splitting ∆i acquires
the oscillating part ai cos(ωt). We assume that the field varies sufficiently
slow and its amplitude ai is small compared with the typical scale of the
excitation energy ei :

ω ¿ ai ¿ ei (6)

in order to treat the field as a weak perturbation. The opposite case ei ¿ ω
has recently been considered in [20].
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A single-particle excitation evolution is described by the Schrödinger
equation (1) with an external field involved

iḃi = (ei − ai cos (ωt)) bi +
X
j

Uijbj . (7)

This equation can be rewritten in terms of Floquet state amplitude din (see
Appendix)

εdin = (ei − nω) din +
X
jp

Tin;jpdjp, (8)

Tin;jp = UijJp−n
µ
aj − ai

ω

¶
(9)

with ε being the energy eigen value of the energy. Here Jp (ai/ω) are the
Bessel functions.

Equations (8) resemble those usually considered in studying the Ander-
son localization when the disorder is static. If the hopping term Tin;jp is
neglected, the eigenstates of the system in the external field correspond to
localized single-site excitations of a TLS coherently dressed by n ”quanta”
of the frequency ω. Thus, each excitation is characterized by two indices
i and n, i.e., its position and the number of dressing quanta. Therefore,
the problem is reduced to investigating the delocalization of these dressed
excitations (DE).

Suppose that an excitation is created at the site i. In fact, this results
in a creation of DE with certain double indices i0. To leave the state i0 for
another DE state jn, the condition of the resonant coupling similar to Eq.
(4) should be satisfied

|ei − nω − ej | ≤ |Ti0;jn| =
¯̄̄̄
UijJn

µ
aj − ai

ω

¶¯̄̄̄
. (10)

The local amplitudes ai vary from one site to another due to fluctuations
of the coupling constant. Let us denote the average of the difference |ai − aj |
by a having the same order of the magnitude as amplitudes ai.

The argument of the Bessel function in (9) is a large parameter of the
order of a/ω À 1. If |n| > a/ω, the magnitude of corresponding Bessel func-
tion is exponentially small, entailing negligible probability of the resonant
coupling. The opposite condition a >| n | ω means that, in order to have
a resonant coupling, the energy difference should be at least less than the
amplitude a:

| n |< a/ω → |ei − ej | < a. (11)
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Under condition (11) and a/ω À 1, the Bessel function in (9) can be
substituted by its asymptotic value. Omitting the standard oscillating pref-
actor, which plays no role in a random discrete problem, one can estimate
the coupling amplitude for the DE (3)

|Ti0;jn| ≈ U0
R3ij

r
ω

a
. (12)

4. Now consider the delocalization of an excitation in the system due to
the alternating field within the framework of the resonant coupling concept
. Two sites i and j are in the resonance when the condition (10) is satisfied
at least for some n < a/ω (see Eq. (11)). Since the energy splitting between
two subsequent levels is equal to the field frequency ω, the resonance always
occurs if the hopping amplitude Ti0;jn exceeds ω and condition (11) is ful-
filled. As directly follows from Eq. (12 ), this happens when sites i and j
are separated by the distance Rij obeying the condition

Rij < R∗ =
¡
U0/
√
aω
¢1/3

. (13)

In this case all the centers with |ei − ej | < a prove to be in the resonant
coupling. Taking into account that the number of such centers in unit volume
is P0a, we find the total number of resonant neighbors in the sphere of radius
R < R∗

W (R, 0) =W (R∗, 0)
µ
R

R∗

¶3
,W (R∗, 0) =

4π

3
P0U0

r
a

ω
. (14)

At the longer distances R > R∗, the coupling amplitude (12) is less than
ω. For this reason, the probability for a genuine resonance decreases by the
factor |Ti0;jn| /ω. As a result, the total number of resonant centers in the
layer R∗ < r1 < R < r2 equals to

W (r1, r2) ≈
Z r2

r1

d3R (P0a)

µ
U0
R3

r
a

ω

1

ω

¶
= χ∗ ln

r2
r1

χ∗ = 4πP0U0

r
a

ω
. (15)

One should pay attention that this result differs from Eq. (5) by the factorp
a/ω.
According to [16], the parameter χ∗ is a decisive parameter for the de-

localization phenomena. As follows from Eqs. (14) and (15), when χ∗ ¿ 1,
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the first resonance occurs at the distance R1 ∼ R∗e1/χ∗ À R∗. Thus, the
first hop of the excitation occurs to the distance R1, taking some time t1
determined by the inverse hopping amplitude t1 ∼ R31/U0 ∝ e3/χ∗ . Then,
the time required for the second hop, when the next resonance emerges, is
exponentially large compared with t1 [16]. Therefore, the delocalization is
exponentially slow, if any.

Let us consider the opposite case χ∗ > 1. Then, the number of reso-
nances exceeds unity in each spherical layer r1 < R < 2r1 (r1 > R∗) and
the resonant sites form an infinite cluster implying a delocalized state [10].
Thus, when the ratio of the external field amplitude to the frequency is suf-
ficiently high to provide the condition χ∗ > 1, delocalization of excitations
takes place

The inverse time of a single hop between two nearest resonant neighbors
in the delocalization regime can be treated as a relaxation rate for a DE
located at certain site. At χ∗ À 1 the distance R1 < R∗ between these
neighbors can be estimated from the relation W (R1, 0) ≈ 1 (see Eq. (14)).
The parameter R1 ≈ (3/(4πP0a))

1/3 and the typical hopping amplitude
corresponding to this distance is given by Eq. (12)

T (R1) =
U0
R31

p
ω/a ≈ ωχ∗. (16)

This expression gives an estimate of the inverse lifetime or relaxation
rate for the DE at an arbitrary site

τ−1∗ ≈ ωχ∗. (17)

The result obtained is valid for zero (very low) temperature. The point
is that at non-zero temperature there exists a finite concentration of excited
DE. Their relaxation with the rate τ−1∗ results in a spectral diffusion that
can destroy the ladder structure of DE.

One can find the spectral diffusion induced transverse relaxation time τ2,
using the relation obtained in [11]. For the dipole—dipole interaction, the
rate of spectral diffusion is P0U0T/τ1. For the time t, the spectral diffusion
results in the TLS energy fluctuation

δE(t) ∼ (P0U0)Tt/τ1.

Correspondingly, the phase fluctuation is

δφ(t) = δE(t)t ∼ (P0U0)Tt2/τ1.
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By definition, δφ(τ2) ∼ 1 or

(P0U0)Tτ
2
2/τ1 ≈ 1. (18)

Therefore, in the case of adiabatic relaxation

τ−12 = a1/4ω1/4T 1/2 (P0U0) . (19)

The concept of DE is valid if we are interested in the time interval t satisfying
the condition

t < τ2. (20)

The uncertainty relation for the energy δE · t > 1 combined with Eq. (20)
results in the condition δE · τ2 > 1. The ladder structure of DE is not
destroyed if δE < ω what means

ωτ2 > 1 (21)

or
ω > a1/3T 2/3 (P0U0)

4/3 . (22)

5. In the opposite case the ladder structure of DE is destroyed and one
should return to investigating the relaxation of initial TLS. Let us make use
of the Landau-Zener approach, considering the transitions due to the slow,
adiabatic, field-induced energy-level crossing.

Let an excited site 0 be chosen. During the period of a field oscillation the
crossing occurs for the sites j obeying the condition |e0 − ej | < a. Within
the framework of the Landau-Zener approach, the excitation hops to the
site j with a probability close to unity if the level ej moving with velocity

aω passes over the energy band of the order of hopping amplitude
³
U0/R

3
ij

´
for the time interval shorter than the coupling time

³
U0/R

3
ij

´−1
. The direct

estimation shows that the actual transition can take place for the centers
located within the sphere of radius R∗ (13). The number of the neighbors
obeying condition (11) appears to be equal to χ∗, and thereby, the average
interval between energy levels of these χ∗ centers is a/χ∗. Since the levels
approach with the velocity aω, the time needed for the first effective crossing
to occur, meaning that the excitation leaves the site i, is estimated just as
a
χ∗
/aω, what surprisingly coincides with τ∗ (see Eq. (17)). This is just the

longitudinal relaxation time τ1. It is evident that dephasing rate also is given
by Eq. (19)
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An important note should be made. To have the real transition, the
phase coherence should be lost for the time shorter then ta < ω−1. This
limitation results in the condition

ωτ2 < 1, (23)

which just corresponds to the condition of DE destruction, opposite to Eq.
(21).

The subsystem of resonant TLS experiences an adiabatic relaxation if
the average distance between TLS of the subsystem R < R∗ (see Eq. (13)).

The excitations can hop between two sites if their energy levels cross
each other. This crossing is due to the fact that external field moves the
TLS energy levels. This motion takes place within energy interval of the
order of a. For this reason, the concentration of resonant TLS which could
experience a relaxation (irrespective of adiabatic or nonadiabatic one!) is
P0a and, respectively, the average distance Ra between the resonant TLS
with tunneling parameters distributed within this interval is

Ra ∼ (P0a)−1/3 . (24)

Thus, if Ra < R∗, the relaxation is adiabatic, what means that

ω < a(P0U0)
2. (25)

For higher frequencies the relaxation is nonadiabatic.

6. Consider the ways to observe the delocalization effects in the ensem-
ble of TLS in the amorphous solids. Several conditions should be satisfied
including the delocalization condition χ∗ > 1 and the smallness of the ex-
ternal field amplitude in comparison with the characteristic energy of levels
a < T (see Eq. (6)).

We take the parameter P0U0 ∼ 4× 10−4 like in vitreous silica [6]. Then,
for the field low frequency ν = ω/2π ∼ 100Hz the condition a > 1mK is
certainly sufficient to provide the regime χ∗ > 1. Thus, the restriction T >
a > 1mK should be fulfilled. The value a ∼ 1mK is physically reasonable.
Indeed, in the case of acoustic external field a = γε where γ is the coupling
constant and ε is the strain field. Provided the typical value γ ∼ 104K is
taken [6], the required strain amplitude is ε ∼ 10−7. This is easy to reach
in the experiments [6].

It seems that the relaxation mechanism proposed can be revealed in the
internal friction experiments dealing, e.g., with the acoustic wave absorption.
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The behavior of the internal friction Q−1, i.e., ratio of the energy fed into
the ensemble of TLS per unit time to the energy current of the sound wave,
depends on the parameter ωτ with τ−1 being the TLS relaxation rate.

If ωτ < 1, the internal friction gains the ωτ -independent constant value
Q−1 ∼ (P0U0)(plateau regime) regardless of the relaxation mechanism. Ac-
cording to Eq. (17 ), when χ∗ > 1 one has ωτ∗ < 1. (Since this condition is
valid for all centers belonging to the resonant subsystem of the TLS obey-
ing condition (6), the parameter τ∗ plays a role of macroscopic relaxation
time.) Therefore, the field-induced relaxation proposed should result just in
the plateau regime. The phonon-induced TLS relaxation results in the same
plateau regime if the temperature is sufficiently large to provide the condi-
tion ωτph < 1. This condition breaks down as the temperature decreases.
For vitreous silica, this happens at the temperatures T < 50mK if ν ∼ 100Hz
(see [6])). Below this temperature ωτph > 1 and the phonon-induced internal
friction decays as Q−1 ∼ T 3. At the same time the field-induced relaxation
being temperature-independent predominates at these temperatures when
χ∗ > 1.

Thus the relaxation mechanism suggested should be studied within the
condition 1mK < a < T < 50mK for frequencies ν ∼ 100Hz. If the ampli-
tude a becomes smaller than 1mK, one has χ∗ ¿ 1 and the field-induced
relaxation vanishes. Keeping in mind the same frequency and temperature
region, one should find a sharp decrease in Q−1.

Consider the relation of the results obtained with our previous works [10]
and experimental data available [18, 19]. The many-body relaxation mecha-
nism [10] essential when the phonon relaxation is suppressed realizes without
account of the strong external alternating field effect. The relaxation rate
predicted in [10] is lower than the rate obtained (see Eq. (17)) in the delo-
calization regime χ∗ > 1. However, below the localization threshold χ∗ ¿ 1
when the field-induced relaxation is suppressed but condition a/ω À 1 con-
tinues to hold for, the field can affect the many-body relaxation. In fact,
the density of resonant pairs crucial for the many-body relaxation approach
developed in [10] increases by a factor

p
a/ω just like the resonance prob-

ability Eq. (15). Therefore, the alternating field can remarkably enhance
the many-body relaxation even in the lack of the direct relaxation induced
by the alternating field. One can think that these effects may explain the
quantitative disagreement between the theoretical predictions of papers [10]
and the experimental data available [18]. On the other hand, the results of
paper [19], corresponding to the extremely low strain field amplitude, show
no anomalies in the low temperature behavior of the internal friction. Pos-
sibly, this negative result is an indirect evidence in favor of the influence of
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the strong alternating field on the relaxation rate reported in Ref. [18]. In
addition, the frequency used in Ref. [19] is much larger than the frequencies
used in [18] and the many-body contribution into the internal friction could
be suppressed at such high frequency [12, 10].

In a number of low temperature measurements [18], the temperature-
independent background has been observed in the internal friction or dielec-
tric losses. Usually, this background is treated as a kind of experimental
errors while in our opinion this can be due to the relaxation mechanism
proposed. In fact, this mechanism leads to the temperature-independent re-
laxation rate. The study of the field amplitude and frequency dependences
of the background can be useful to check such possibility.

Recently, papers [1, 2] have appeared, which seem to strongly support
the results obtained. One of the main conclusions of these papers is that
relaxation rate τ−11 ∼

√
E with E being the strength of the external alternat-

ing field. Nevertheless, additional experimental study of the field amplitude
and frequency dependences for the relaxation rate at low temperatures, as
well as a careful analysis of the experimental data interpretation are needed
to shed a further light on the problem.

This work is supported by Russian Fund for Basic Research and the
Program University of Russia.

Appendix

To solve Eq. (7), let us introduce the partial amplitudes of the Floquet
states cin so that

bi = exp [−iεt]
X
n

cin exp (−inωt)

(see, e.g., [21]). Substituting this expression into Eq. (7) and taking the
Fourier transformation of the equation obtained, we arrive at the equation

εcim = (ei −mω) cim − ai
2
(cim+1 + cim−1) +

X
j

Uijcjm.
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Then we multiply the last equation by the Bessel function Jn−m
¡
ai
ω

¢
and

perform summation over m. The result can be presented in the form

ε
P

m cimJn−m
¡
ai
ω

¢
= (ei − nω)

P
m cimJn−m

¡
ai
ω

¢
+

+
P

jm UijcjmJn−m
¡
ai
ω

¢
+
P

m cim ((n−m)ω·

·Jn−m
¡
ai
ω

¢− ai
2

¡
J(n−m)+1

¡
ai
ω

¢
+ J(n−m)+1

¡
ai
ω

¢¢¢
.

(26)

Due to the well known properties of Bessel functions [22], each term in the
last sum of the above equation vanishes. Finally, making use of the Graph
summation formulae for Bessel functions [22]

Jn−m
³ai
ω

´
=
X
p

Jp−n
³aj
ω
− ai

ω

´
Jp−m

³aj
ω

´
in the sum

P
jm in (26) and introducing the notation

din =
X
m

cimJn−m
³ai
ω

´
,

we obtain

εdin = (ei − nω) din +
X
jp

Ũin;jpdjp, (27)

Ũin;jp = UijJp−n
³aj
ω
− ai

ω

´
.
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