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Abstract

A coherent superposition of many nuclear spin states can be pre-
pared and manipulated via the hyperfine interaction with the elec-
tronic spins by varying the Landau level filling factor through the gate
voltage in an appropriately designed quantum Hall ferromagnet. Dur-
ing the manipulation periods, the 2D electron system forms spatially
large skyrmionic spin textures, where many nuclear spins follow lo-
cally the electron spin polarization. The collective spin rotation of a
single skyrmion becoming macroscopically massive in the limit of zero
Zeeman splitting, may dominate the nuclear spin relaxation and deco-
herence processes in the quantum well.

PACS: 73.43.-f, 03.67.Lx, 71.70.Ej, 76.60.-k
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1 Introduction

The emerging fields of quantum information processing and quantum com-
puting (QC) [1] have stimulated recently a flurry of activity in the estab-
lished fields of atomic and condensed matter physics, approaching fundamen-
tal questions, such as the influence of measurement on quantum mechanical
systems or the meaning of phase coherence in interacting many particle sys-
tems, from a strinkingly new point of view. Experimental realization of QC
has been so far successfully achieved, however, only in devices consisting of
a few quantum bits (qubits).

The idea presented in this paper should not be considered as a proposal
for building any kind of quantum computer. Instead it addresses the general
problem of how to store and manipulate a large number of qubits without
losing their phase coherence. This is done with respect to a concrete phys-
ical system consisting of nuclear spins in semiconducting heterojunctions
under the conditions of the odd integer quantum Hall (QH) effect [2]. Our
proposal has been motivated by the set of experiments, reported in [3, 4],
where the Knight shift, KS , and the spin lattice relaxation time T1 of the
71Ga nuclei in GaAs multiple quantum well (MQW) structure under per-
pendicular magnetic field were detected by means of the optically pumped
NMR (OPNMR) technique. The electronic Landau level (LL) filling factor
was varied in these experiments by tilting the magnetic field axis with re-
spect to the 2D layers. The Knight shift was found to reduce dramatically
as the filling factor was shifted slightly away from ν = 1, indicating that
the injection of a single charge into the 2D electron system is followed by
reversal of many electronic spins. In the same interval of the filling factor
the relaxation time was found to drop by several orders of magnitude with
respect to its value in the QH ferromagnetic ground state.

Both effects are considered as strong evidence for the creation of skyrmi-
onic spin texture [5] in the electronic spin distribution as the filling factor
shifts slightly away from unity, and indicate the crucial importance of the
hyperfine interaction in controlling the nuclear spin dynamics. Since the
hyperfine interaction is the dominant coupling of the nuclear spins to their
environment they may be exploited as qubits provided the environment, that
is the 2D electron gas, is in a nondissipative, coherent quantum state (e.g.
like the QH ferromagnetic state at LL filling factor ν = 1 at low temperature
[6]). Furthermore, as will be shown below, near ν = 1 it may be possible to
manipulate coherently a large number of nuclear spins through the hyperfine
interaction with the electronic spin texture by varying a single parameter,
the LL filling factor, through changes in the gate voltage.
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At filling factor ν = 1 the ground state of the 2D electron gas is ferro-
magnetic even in the limit of zero Zeeman energy [7]. The flipping nuclear
spins in this state through the hyperfine interaction is followed by creation
of spin excitons [8, 9]. The energy cost of this excitation can be minimized if
both the electron and the hole are created at the nuclear position, where the
energy gain associated with the e-h Coulomb attraction is exactly compen-
sated by the exchange energy of the hole. Yet, the remaining small Zeeman
energy (on the electronic energy scale) is a huge energy gap for the nuclear
spins. The extremely long spin-lattice relaxation time observed by Barrett
et al. [3, 4] may be due to this energy gap (see below, however). Over-
coming the Coulomb attraction by increasing the e-h distance leads to the
increase of the exciton transverse momentum. The corresponding excitation
energy scales with the Coulomb energy, which is ∼ 100K, that is much larger
than the Zeeman splitting. The spin exciton spectrum is strongly influenced
by long range electrostatic potential fluctuations, which can trap the elec-
tron and the hole separately in local potential wells and so reduce, or even
completely remove the energy gap [10].

Slightly away from ν = 1 the lowest energy state of the electron gas is
a spin texture, in which the average spin distribution is smoothly twisted
in space in order to minimize the exchange energy [7]. The size of the
twist is determined by the Zeeman energy [11 - 13]. Microscopic calcula-
tions based on the Hartree-Fock (HF) approximation for a single, isolated
skyrmion [11, 14, 15], have found a family of low energy excitations, with
an approximately quadratic relation between the energy and the number of
flipped spins, K, which can be associated with the kinetic rotational en-
ergy of the entire spin texture around its symmetry axis. However, except
for the special case where K is an integer, the spectrum has an excitation
gap, which is some fraction of the large Coulomb energy scale. To account
for the observed enhancement of the nuclear relaxation rate, the authors
have suggested [16] that at filling factor slightly away from ν = 1, where
there is a finite density of skyrmions, the ground state is a Skyrme crys-
tal for which the spin waves spectrum is gapless due to the breakdown of
the global spin rotation symmetry. This appealing interpretation is hard to
reconcile with the latest OPNMR measurements [17]. Based on this data,
the many-skyrmion state does not appear consistent with the close packed
periodic lattice described in [16]. Instead, it was suggested [17] that the
skyrmions’ tail is drastically reduced, e.g., due to the effect of disorder po-
tential [18] leading to some kind of spatially inhomogeneous state of nearly
independent pinned skyrmions. This conclusion indicates that the problem
of spin excitations in a single skyrmion requires further investigation.
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It has been recently shown [19] that the excitation gap in the collective
rotational spectrum of a single skyrmion goes to zero when the skyrmion
radius tends to infinity, and that for the characteristic skyrmion sizes found
experimentally the gap is a small fraction of the Zeeman energy scale, rather
than of the large Coulomb energy scale, as claimed previously. This low-lying
electron spin excitation could strongly influence the nuclear spin relaxation
and dephasing processes in the MQW via hyperfine interactions. Our goal
in the present paper is therefore to investigate the effect of low-lying electron
spin excitations in QH ferromagnet near filling factor ν = 1 on the phase
coherence of many nuclear-spin qubits, which are manipulated through the
hyperfine interaction by varying the gate voltage.

2 The model

We start our analysis by considering the Hamiltonian for nuclear spins in-
teracting with 2D electron gas in MQW structure

bH = −~γn
X
j

bIj ·B0 − ~γe Z d2rbS (r) ·B0 + bHee + bHen, (1)

where bHen = A
X
j

bS (rj) ·bIj . (2)

Here bIj is the nuclear spin operator located at rj , bS (r) is the electronic
spin density operator, B0 is the external magnetic field, which is assumed
to be oriented perpendicular to the 2D electron gas ( B0 = B0z ), bHee is the
electron-electron interaction, γn = gnµn/~ and γe = geµB/~ are the nuclear
and electronic gyromagnetic ratios respectively, andA = 8π

3 gnµng0µB |u0 (0)|2
is the Fermi contact hyperfine coupling constant. In this expression u0 (0)
is the periodic part of the Bloch wavefunction at the nucleus, and g0 is the g-
factor of a free electron. We use the standard normalization

R
υ |u0 (r)|2 d3r =

υ, where υ is the volume of a unit cell in the crystal.
The manipulation of nuclear spins is carried out through the spin flip-flop

processes associated with the ’transverse’ part of the interaction HamiltonianbHen (Eq. (2) ), i.e. 1
2A
P

j

hbIj,+ bS− (rj) + bIj,− bS+ (rj)i, where bIj,+ = bIj,x +
ibIj,y, bIj,− = bIj,x − ibIj,y, and bS+ (r) = bψ†↑ (r) bψ↓ (r), bS− (r) = bψ†↓ (r) bψ↑ (r).
Here bψσ (r) ,

bψ†σ (r) are the electron field operators with spin projections
σ =↑, ↓.
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The strength of the hyperfine coupling constant can be estimated by
using the expression

KS ≡ 1

h
AhbSz (rj)i ≈ α (n2D/2πl) (3)

for the Knight shift at filling factor ν = 1, where α ≡ A/~, n2D is the
areal density of the 2D electron gas, and l is the QW width. For the 31Ga
nucleus (with gn ≈ .27) in GaAs |u0 (0)|2 ∼ 104, and for the parameters
characterizing the sample used by Barrett et al. [3], i.e. l ≈ 30nm, and
n2D = 1.5 × 1011cm−2, one finds KS ∼ 104Hz, in good agreement with
Ref. [3].

In the framework of the model just described, we will now show how, by
varying the LL filling factor, a large number of nuclear spins can be prepared
in a state appropriate to start quantum computation. A number, n, stored
in the memory of a hypothetical quantum computer made of nuclear spins,
may be described as a direct product of N pure nuclear spin states

|ni = |n1i⊗ |n2i⊗ ...⊗ |nNi ,
where |nji =

P
σ=±1 δnj ,σ |j, σi, δnj ,σ is the Kronecker delta, and |j, σi is a

nuclear state with spin projection σ for a nucleus located at rj . To carry out
the quantum computing process, however, a coherent superposition of such
products, i.e. |ψi = PN

n=1 αn |ni, should be prepared at the time t = 0.
This superposition may be represented more transparently for our purposes
by the direct product of N mixed spin up and spin down states,

|ψ (t = 0)i =
NY
j=1

⊗ (uj |j, ↑i+ vj |j, ↓i)

with the normalization |uj |2 + |vj |2 = 1.
While the hyperfine coupling with electron spins is the dominant interac-

tion of the nuclear spin qubits system with its environment, it is only a weak
perturbation to the electron spin system. Thus, at a temperature which is
much lower than any electronic energy scale in this system, the electronic
spins at LL filling factor ν should be in the corresponding ground state,|0; νi.
One may, therefore, construct an effective nuclear spin Hamiltonian by pro-
jecting the combined nuclear-electronic spin Hamiltonian, Eq. (1), on the
ground electronic state, |0; νi. The resulting effective nuclear spin Hamil-
tonian can be written as:

bHn = −~γn
NX
j=1

bIj ·B0 +A
NX
j=1

S (rj) ·bIj ,
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where S (r) = h0; ν| bS (r) |0; νi is the expectation value of the electronic spin
density in the ground electronic state at filling factor ν.

The corresponding state of the nuclear spin system can be found by
considering uj and vj as variational parameters, and then minimizing the
energy functional En= hψ| bHn |ψi, with respect to uj , vj . As noted above, at
ν = ν0 6= 1, S (r) has nonzero transverse components, associated with the
skyrmionic spin texture smoothly varying in space.

A simple calculation shows that

En=1
2

X
j

n
Ωj

³
|vj |2 − |uj |2

´
+
£
Avju

∗
jS− (rj) + c.c

¤o
,

where Ωj = γnB0 − αSz (rj) is the local nuclear Zeeman energy. The ex-
tremum conditions (subject to the normalization |uj |2+|vj |2 = 1) are readily
solved to yield:

|vj |2 , |uj |2 = 1

2

µ
1± ~Ωj

εj

¶
,

where
εj =

q
~2Ω2j +A2 |S+ (rj)|2.

In this state the nuclear spin polarization hψ|bIj |ψi follows the underlying
electronic spin texture; the transverse component takes the form

Ij,+ = hψ| bIj,+ |ψi = u∗jvj = ±
1

2
AS+ (rj) /εj , (4)

whereas the longitudinal component is

Ij,z = hψ| bIj,z |ψi = 1

2

³
|uj |2 − |vj |2

´
= ±1

2
~Ωj/εj .

Thus the nuclear spin distribution follows the distribution of the elec-
tronic skyrmion spin texture. The key parameter here is the local mixing
parameter

ηj ≡ (A/~Ωj) |S+ (rj)| = (2πKS/Ωj)
¯̄̄ eS+ (rj)¯̄̄

with eS+ (rj) ≡ S+ (rj)

(n2D/l)
,

which determines the local deviation of the nuclear spins state from a pure
ferromagnet. Thus for ηj ¿ 1 the many nuclear spin state is very close to
a pure ferromagnet. In the opposite extreme limit, ηj À 1, all individual
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nuclear spin states are equally probable, i.e. |vj |2 = |uj |2 → 1/2, and so
one generates an ideal starting state for quantum computing [20]. As we
will see below, this extremely strong mixing condition is unrealistic. In the
intermediate situation, where ηj ∼ 1 almost everywhere, the distributions
|vj |2 , |uj |2 vary moderately around the mean value 1/2.

The condition for achieving such a desired situation is, therefore, two-
folded: (1) the average Knight shift, KS , should be comparable to the aver-
age nuclear Zeeman frequency, Ω, i.e. (2πKS/Ω) ∼ 1; and (2) the transverse
component of the normalized electronic spin density,

¯̄̄ eS+ (rj)¯̄̄, should be of
the order one over a large spatial region (namely a region consisting of many
nuclear spins ). Usually the Knight shift is a small fraction of the NMR fre-
quency, so that the first condition is not easily fulfilled. An exceptional
example will be discussed at the end of the paper. The second condition is
satisfied by large skyrmionic spin texture (i.e. for sufficiently small effective
g-factor).

To place our discussion in the context of the QC paradigm, let us now
outline a scenario for coherent manipulation of many nuclear spins in MQW
(e.g. by varying the LL filling factor). First of all, the variation of the fill-
ing factor is required to be performed without overheating the nuclear spin
system. This can be achieved by varying the gate voltage, rather than by
tilting the magnetic field direction with respect to the 2D layer, as usually
done. If the filling factor is initially tuned at ν = ν0 6= 1,≈ 1, and then kept
fixed for a time longer than the (relatively short) relaxation time T1 (ν = ν0)
(see Refs. [3, 4]), then the nuclear spins will be settled in the ground state
corresponding to the electron gas in the spin texture state at filling factor
ν = ν0. As shown above, the corresponding nuclear spin distribution, which
follows the twisted structure of the electronic spin distribution, may be an
appropriate starting point for a QC process. The nuclear spins can return to
their spatially uniform (ferromagnetic) state by switching the filling factor
back to ν = 1. If the switching is done sufficiently fast (on the time scale
T1 (ν = ν0)), then the nuclear spins may trap in their twisted state for a long
time (i.e. of the order of the large relaxation time T1 (ν = 1)). The next steps
may be carried out by varying the filling factor again slightly (but each time
differently) away from, and then back to ν = 1, and so manipulating the nu-
clear spins system via the hyperfine interaction. During each manipulation
cycle, when the electronic spins form skyrmionic spin texture, the nuclear
spin dynamics is controlled, through the hyperfine interaction, by the low-
lying spin excitations characterizing the 2D electron system slightly away
from ν = 1.
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3 Nuclear spin dynamics

As discussed above, during the manipulation cycle, when the nuclear spins
have relatively short relaxation and dephasing times, their dynamics is con-
trolled by the low-lying spin fluctuations of the electron gas through the
hyperfine interaction. For a single isolated skyrmion the rigid rotation (by
angle ϕ) of the entire spin texture around its symmetry (Z) axis is a zero
mode, which can generate such low energy fluctuations. The generator of
this rotation, bLz, is the canonical angular momentum conjugate to ϕ. As
discussed in detail in Ref. [5], the eigenvalues of bLz correspond to the total
number K of flipped spins in the skyrmion.

It has been recently shown [19] by using a phenomenological approach

based on microscopic HF calculation [12, 13] that the angular velocity
³
dϕ
dt

´
can be written as an effective Larmor frequency for precession of the entire
spin texture around the external magnetic field axis,µ

dϕ

dt

¶
∼ eH

2Mscolc

with an effective massMscol which diverges with vanishing g-factor as g−5/3.
For typical experimental values of g it was found that Mscol/m0 ∼ 104.

In addition to the collective rotational motion of the entire spin texture
just described, the internal degrees of freedom of the spin texture can also
be excited, e.g., as spin waves associated with single electron-hole pair ex-
citations (spin-excitons) [8, 9]. The above consideration shows that for a
sufficiently large skyrmion, the energy gap of spin-waves εsp is much larger
than that of the collective rotational spectrum. This separation of energy
scales may be expressed explicitly by writing the transverse electron spin
density in the form:

S+ (r, t) ≡ 1

4π
n (r, t) =

1

4π
en (r, t) eiϕ(t) (5)

where ϕ (t) is the instantaneous collective rotation angle and en (r, t) stands
for all other degrees of freedom in the electronic spin space. It can be
derived by expressing the phase of n (r, t) = |n (r, t)| eiθ(r,t) as a Fourier
series θ (r, t) =

P
k6=0 θk (t) e

ik·r + θ0 (t) and identifying the uniform term,

θ0 (t), with ϕ (t), so that en (r, t) = |n (r, t)| exp hPk6=0 θk (t) e
ik·r
i
.

The processes of nuclear spin relaxation and decoherence are reflected in
the time dependence of the average I+,− = hbI+,−i, where the brackets h...i
stand for the state of the combined system of nuclear and electronic spins
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(see Ref. [6]). Exploiting the adiabatic approximation, which is valid when
the effect of the hyperfine interaction is so weak as to be neglected beyond
the leading order, which is the first order in the calculation of the nuclear
spin eigen-energies, and the second order in the calculation of relaxation and
decoherence. Thus, we have for the transverse component of the nuclear
spin located at r, up to the second order of the corresponding perturbation
theory [6]: ·

∂

∂t
+ iΩ (r)

¸
I+(r, t) = (6)

−α
2

4

Z t

0
dτ
D
0
¯̄̄nbS+(r, t), bS−(r, τ)o¯̄̄ 0E ei (τ−t)I+(r, t)

where the symbol {, } stands for anticommutator and the averaging is per-
formed over the ground state |0i of the electronic system. The local NMR
frequency Ω (r) corresponds to the unperturbed precession of the nuclear
spin in the external static magnetic field (with the frequency = γnB0) and
the first order correction due to the local hyperfine interaction ( the Knight

shift ), i.e. Ω (r) = γnB0 − α
D
0
¯̄̄ bSz (r)¯̄̄ 0E. Note that the corresponding

correction due to the transverse component of hyperfine field is neglected in
Eq. (6). Note also that in the framework of the adiabatic approximation,
used in the derivation of Eq. (6), the weak time dependence of the operatorbI+(τ), due to depolarization, is neglected (so that bI+(τ) ' bI+(t)ei (τ−t) ).

The resulting equation, (6), is solved by

I+(r, t) = I+(r, 0)e
−Γ(r,t)−iΩ(r)t, (7)

where

Γ (r, t) = Re
Z t

0
dt0ξ

¡
r, t0

¢
and

ξ (r, t) =
α2

4

Z t

0
dτei (τ−t)

D
0
¯̄̄nbS+(r, t), bS−(r, τ)o¯̄̄ 0E

At filling factors slightly away from ν = 1, where the density of skyrmions
is small and the interaction between them can be neglected, bS+(r, t) may
be written in the form (5) describing a single skyrmion centered at r = 0.
On the large time scale relevant to the nuclear spin dynamics of interest
here, when the internal degrees of freedom of the spin texture are essentially
frozen, it is possible to neglect the time dependence of en (r, t) in Eq. (5)
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(by writing en (r, t) ≈ en (r) ), so that:
ξ (r, t) ≈

³ α

8π
|n (r)|

´2 Z t

0
dτei (τ−t)

D
0
¯̄̄n
eiϕ(t), e−iϕ(τ)

o¯̄̄
0
E
,

where
eiϕ(t) ≡ eitHrot/~eiϕe−itHrot/~,

and bHrot =
1
2U
³
1
i
∂
∂ϕ −K

´2
[19]. A straightforward algebra yields:

eiϕ(t) = eiϕ exp

½
i
U

2~
t

·
1− 2

µ
i
∂

∂ϕ
+K

¶¸¾
, (8)

so that the correlation functionD
0
¯̄̄n
eiϕ(t), e−iϕ(τ)

o¯̄̄
0
E
= 2cos [UδK (t− τ) /~] ,

where δK ≡ [K] −K, and [K] is the integer closest to (K − 1/2). Conse-
quently, one finds that

Γ (r, t) = 2
³ α

8π
|n (r)|

´2 1− cos [(UδK/~− ) t]

(UδK/~− )2
. (9)

This expression shows that as long as the rotational energy gap U |δK|
is much larger than the nuclear Zeeman energy ~ , the off-diagonal element
of the nuclear spin density matrix (i.e. the coherence) does not decay but
oscillates very quickly (with the frequency U |δK| /~ ) between I+(r, 0) and
I+(r, 0)e

−(A|S+(r)|/UδK)2 . It should be stressed that in deriving Eq. (9) the
interaction of the electronic system with its environment was completely ne-
glected. This coupling should lead to some energy dissipation, which results
in damping of the oscillatory component of Γ (r, t), so that for sufficiently
long times, I+(r, t)→ I+(r, 0)e

−(A|S+(r)|/UδK)2 .
As discussed above, the effective electron g-factor can become locally

sufficiently small to make the local skyrmion radius large enough, so that the
corresponding rotational energy gap U becomes comparable to the nuclear
Zeeman energy ~ . For such a large skyrmionic spin texture the extremely
slow collective spin rotation leads to a complete loss of nuclear spin coherence
via the hyperfine coupling. Under this condition the decay is Gaussian,
I+(r, t) ∼ e−(α|n(r)|/8π)

2t2 , with the characteristic relaxation time

T2 ∼ ~/A |S+ (r)| = π/KS

¯̄̄ eS+ (r)¯̄̄ ,
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which is of the order of 0.1 − 1 milliseconds for GaAs MQW. It should
be stressed here that the neglect of the first order correction due to the
transverse component of the hyperfine field in Eq. (6) results in vanishing
of the equilibrium solution I+(r, t→∞). The present dynamical approach
should be therefore modified to take into account this correction in order to
describe relaxation to the nonvanishing nuclear spin texture, Eq. (4).

Figure 1: The attenuation exponent of the coherence (off diagonal element
of the density matrix) of nuclear spin 1/2 as a function of time in QH
ferromagnet for εC/εsp = 32 (see the text) showing incomplete decoherence
due to virtual electronic spin wave excitations.

At filling factor ν = 1, where the number of skyrmions vanishes (note
that due to spatial inhomogeneity of the local filling factor some equal num-
ber of skyrmions and anti-skyrmions can exist even at ν = 1), the nuclear
spin dynamics is controlled by the coupling to the well known gapped spin
waves. In the presence of the gap the virtual flip-flop excitations of electronic
spin waves via the hyperfine interaction (which are the vacuum quantum
fluctuations of the QH ferromagnet) lead to decoherence of the nuclear spin
states, i.e. [6]:

Γ (r, t) = Γ(t) = (hKS)
2
Z ∞

0

ekdeke−k2/2 1− cos([εex(ek)/~− ]t)

[εex(ek)− ~ ]2
, (10)

where εex(ek) ≈ εsp +
1
4εC

ek2, for ek = klH ¿ 1, and εC =
p
π/2

¡
e2/κlH

¢
is

the Coulomb energy. Similar to the case of the collective mode with a large
excitations gap discussed below Eq. (9), in the present case the coherence
does not decay to zero at any time. In contrast to the effect of the undamped
collective mode, however, the presence of a continuous band of spin waves
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above the Zeeman gap εsp results in some irreversible loss of coherence.
This decoherence occurs on a very short time scale — the precession period
of the electronic spin, 2π/ωsp, whereas for longer times the coherence under-
goes damped oscillation (with the frequency ωsp) about a nonzero value [21]

(see Fig. 1), that is: I+(r, t)eiΩ(r)t → I+(r, 0) exp
h
−2 (εC/εsp) (hKS/εsp)

2
i
.

For hKS ¿ εsp (εC/εsp)
1/2 (e.g. for GaAs MQW hKS/εsp ∼ 10−7, and

εC/εsp ∼ 30 at H = 10T), the corresponding decoherence is negligibly
small. In actual heterojunctions the electronic Zeeman gap is usually much
smaller than the theoretical value. It can be further suppressed by applying
pressure [22], so that the situation of gapless spin waves may not be unreal-
istic experimentally. In this case the integral over ek in Eq. (10) in the long
time limit tÀ ~/εC acquires the value

Γ(t) = 2 (hKS)
2
Z ∞

0

ekdeke−k2/2 sin2(εCek2t/8~)
(εCek2/4)2 →

Ã
(2π)2K2

S

εC/h

!
t,

so that the time decay of coherence is simple exponential

I+(r, t)e
iΩ(r)t → I+(r, 0) exp (−t/T2) ,

where

T2 =
1

8π2

µ
εC/h

KS

¶µ
1

KS

¶
.

For GaAs MQW this expression yields T2 ∼ 103 sec., indicating that the long
relaxation times observed experimentally in the QH ferromagnetic state can
be reasonably explained by a gapless spin exciton spectrum.

4 Conclusion

In this paper it was demonstrated how a coherent superposition of many
nuclear spin states can be prepared and manipulated via the hyperfine in-
teraction by varying the LL filling factor in appropriately designed QH ferro-
magnet. During the manipulation periods the electronic spins form spatially
large spin textures where the average spin polarization in the plane perpen-
dicular to the external magnetic field varies smoothly and the individual
spins are strongly correlated over large microscopic regions. The nuclear
spins coupled to their environment only via the hyperfine interaction with
the electron spins follow the changes in the electronic spins system by cre-
ating their own spin textures which replicate the electronic ones. This effect
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is expected to be significant only in very special systems with the strength
of hyperfine interaction comparable to the nuclear Zeeman energy. The nu-
clear spin relaxation and decoherence processes in such states are governed
by the coupling to collective spin rotational modes of the entire electronic
spin textures, which have a vanishingly small excitation gap in the regions
where the local electronic g-factor vanishes.

It turns out that GaAs MQW, despite its remarkable features described
above, is not suitable for our purpose. The reason is two-fold:

1) The hyperfine coupling constant in GaAs is much too small to be
effective in manipulating nuclear spins in the QW.

2) The nuclear spin dephasing time in QW structures based on GaAs/
AlGaAs, is expected to be much smaller than the shortest value of T1 found
in these experiments.

This drawback is due to the fact that all abundant isotopes in this com-
pound (i.e. 69Ga, 71Ga, 75As, all with I = 3/2, and 27Al with I = 5/2) have
non-zero nuclear spins, so that significant dephasing due to dipolar interac-
tions is expected. Indeed, a rough estimate for T2 for a solid in which each
nuclear spin has nearby nuclear spins is in the range of milliseconds [23, 24].

A possible solution for both problems may be found in MQW structures
composed of Si/Si1−xGex [25]. The most abundant isotopes of these nuclei
have zero nuclear spins so that by purifying the host sample isotopically [25]
and then weakly doping with, e.g. 31P donor [26], which has I = 1/2, one
may reduce the dipolar dephasing to the desired low level. Furthermore, the
hyperfine coupling between the conduction electrons and the 31P nucleus
in the Si host is strongly enhanced, due to high concentration of electron
s-orbitals at the donor nucleus. Thus, a Knight shift of about 30 MHz,
which is comparable to the NMR frequency at about 1T, can be obtained
for Si:31P [26].
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