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Abstract

We study the two-dimensional electron gas in magnetic field with
scattering on point impurities uniformly distributed in the sample. We
show that the electron-impurity interaction completely lifts the Lan-
dau level degeneracy even at low impurity concentration. This state-
ment is in contradiction with the previous results obtained (F. Wegner,
Z. Phys. B 51, 279 (1983); E. Brezin, D.I. Gross, and C. Itzykson,
Nucl. Phys. B 235, 24 (1984); W. Apel, J. Phys. C 20, L577 (1987);
Y. Avishai, M.Ya. Azbel and S.A. Gredeskul, Phys. Rev. B 48, 17280
(1996); S.A. Gredeskul, M. Zusman, Y. Avishai, and M.Ya. Azbel,
Phys. Rep. 288, 223 (1997)) in the unphysical approximation of
two-dimensional impurities. We calculate the density of states in the
self-consistent approximation taking into account multiple impurity
scattering. There is a large region of the electron energy ω, measured
from a Landau level, where the density of states ρ(ω) is inversely pro-
portional to |ω| and proportional to the impurity concentration. Our
results are applicable to different 2D electron systems as heterostruc-
tures, inversion layers and interfaces of condensed media.
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1. Two-dimensional (2D) electron systems are realized on interfaces of
two condensed media. The typical examples of such systems are heterostruc-
tures [2], inversion layers and electrons on the helium surface [1]. In magnetic
field the spectrum of 2D electrons is discrete and infinitely degenerate. We
consider the removal of this degeneracy caused by interaction of electrons
with point impurities. There is an opinion that at low surface concentration
ns of these impurities the infinite degeneracy the Landau levels is lifted only
partially [3]. More precisely, if ns < 1

2πl2H
, the Landau level degeneracy is

S
2πl2H

−N . Here N = nsS is the total number of impurities, S is the surface

accessible for electrons, lH =
p
~c/eH is the magnetic length. In this case

N electron states split from each Landau level and form the impurity band.
The proof of this statement [3] is based on the possibility to determine the
electron wave function on a Landau level in such a way that it is zero at
the points where the impurities are situated. In this case point impurities
do not influence the spectrum of S

2πl2H
−N electron states. However, such a

conclusion assumes the surface impurity density nS to be determined. The
problem is that 2D electron systems are usually open. The electron motion
along the z axis perpendicular to the conducting planes is characterized by
the wave function ϕ(z) confined on the macroscopic scale z∞ depending on
the sample geometry. A typical wave function ϕ(z) has the form [1, 2]

ϕ2(z) =
1

2z0
z2∗e

−z∗ at 0 < z < z∞,

ϕ(z) = 0 at z < 0, z∗ ≡ z/z0. (1)

Electrons can move in the region 0 < z < z∞ (not only in z ≤ z0). Hence,
even at low bulk concentration nimp of impurities their surface density nS =
nimpz∞ is very large (the effective interaction of electrons with an impurity
now depends on the distance of this impurity from the conducting plane).
Usually one can put nS =∞. Hence, the infinite degeneracy of the Landau
levels is lifted completely by point impurities. This fact has a substantial
impact on the electron transport and the quantum Hall effect. In other
words, the number of impurities is small in the region z ≤ z0 but large in
the region z < z∞ : C∞ = C0

z∞
z0
À 1. This situation usually takes place

in experiment [1], [2]. For electrons on the liquid helium surface the heavy
atoms of helium vapor play the role of impurities. Below we calculate the
electron density ρ at low impurity concentration C0 ≡ nimp2πl

2
Hz0 ¿ 1,

that shows the importance of 3D impurity distribution.

2. The density of states ρ(E) is related to the imaginary part of the
electron Green’s function G(r, r0, E) by the relation ρ(E) = −1

π ImG(E),
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where G(E) =
R
d3rG(r, r, E) [4]. Since the electron system is uniform

in the conducting (x, y) plane, the Green’s function does not depend on
(x, y): G(r, r, E) = G(z,E) = G(E)ϕ2(z). The last equality implies that
all electrons are on the lowest quantum size energy level and have the same
wave function ϕ2(z). The magnetic field H is assumed to be strong so
that the electron interaction with impurities V (r) does not mix the electron
wave functions of different Landau levels. Hence, the density of states ρ(E)
depends only on the quantity ω ≡ E − ε0 − (n + 1/2)ωc, where ε0 is the
energy of size quantization along the z-axis and ωc is the cyclotron energy.
The interaction potential of electrons with point impurities is

V (r) = u0
X
i

δ(x− xi)δ(y − yi) δ(z − zi). (2)

Here x, y, z, xi, yi, zi are the electron and impurity coordinates. The scatter-
ing length is equal to

a = − m

2π~2
u0. (3)

The Green’s functionG(ω) is related to the unperturbed Green’s function
G0(ω) of a pure electron system by the well-known formula [4]

G(ω) =
1

G−10 (ω)− Σ(ω)
, G0(ω) =

1

ω
. (4)

The function Σ(ω) in (4) is [4 - 6]

Σ(ω) = u0nimp

Z z∞

0

ϕ20(z)dz

1− u0
2πl2H

ϕ20(z)G(ω)
. (5)

This expression corresponds to the summation of all diagrams without in-
tersection of impurity lines [6] and subsequent averaging over the impurity
positions. The formulas (4),(5) are valid only for point impurities (2). It is
convenient to determine the reduced wave function ϕ∗ of perpendicular-to-
layers electron motion:

ϕ20(z) =
1

z0
ϕ2∗(z∗), z∗ ≡ z

z0
,

Z
ϕ2∗(z∗) dz∗ = 1, (6)

where z0 is the characteristic scale of the function ϕ0(z). From (3), (5), (6)
we get

Σ(ω) = −G−1(ω)C0J(ω); J(ω) ≡
Z z∞/z0

0

ϕ2∗(z∗)dz∗
ϕ2∗(z∗)− 1

ω0G(ω)

, (7)

243



where C0 ≡ 2πl2Hz0nimp; ω0 ≡ − a
z0
ωc.

3. To begin with we restrict ourselves to the first order in the impurity
concentration replacing the exact Green’s function in formulas (5), (7) by
the unperturbed Green’s function G0 = 1/ω. This approximation means
the summation of all diagrams corresponding to the scattering by a single
impurity. From (4), (7) one sees that the Green’s function G formally has a
pole at ω = 0:

G =
1

ω[1 + C0J(ω)]
. (8)

However, as follows from (7), at ω → 0 the integral over z∗ diverges, that
leads to the small value of the residue at this pole:

1

π
ImG(ω) = δ(ω)

1

1 + C∞
; C∞ = C0

z∞
z0

. (9)

For z∞ =∞ the residue is zero and the infinite degeneracy of Landau levels
is lifted completely even in the first order in the impurity concentration.
The density of states ρ(ω) is determined by the function J(ω) (7)

ρ(ω) =
−C0ImJ(ω)

πω[(1 + C0ReJ(ω))2 + (C0ImJ(ω))2]
. (10)

First, we consider the model case when the reduced wave function ϕ∗
has the form

ϕ2∗(z∗) = e−z∗ at z∗ > 0 (11)

ϕ2∗(z∗) = 0 at z∗ < 0.

This wave function corresponds to the boundary condition at z = 0 for
narrow and deep potential well. The function J(ω) (7) becomes

J(ω) = ln
ω − ω0

ω
. (12)

Assuming the presence of only one type of repulsive impurities we obtain
from (10), (12)

ρ(ω) =
C0

ω

·µ
1 + C0 ln

ω0−ω
ω

¶2
+C20π

2

¸ . (13)

The density of states ρ(ω) is determined by the cut (not a pole) of the
Green’s function G(ω). Using the definition of ω0 (7), we get the criterion
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of the weakness of electron-impurity interaction V (r) (3): a¿ z0. Hence, if
the scattering length of electron by impurity is less than the characteristic
scale of the quantization along z-axis, the single Landau level approximation
can be used, and the densities of states from different Landau levels do not
overlap. From (13) it follows that in the wide region of ω the density of
states is inversely proportional to ω:

ρ(ω) =
C0
ω
, C0 ln

ωo
ω
¿ 1. (14)

Up to the terms ∼ C20 the integralZ
ρ(ω) dω ∼=

ω0Z
0

C0dω

ω[1 + C0 ln
ω0−ω
ω ]2

∼= 1. (15)

Hence, the electron-impurity interaction does not change the total number
of electron states but broadens the δ-peak of the unperturbed density of
states. This means that at any small value of ω there is an impurity with
the coordinate zi = z0 ln

ω0
ω À z0, that lifts the Landau level degeneracy.

These statements do not depend on the exact shape of the wave function
ϕ(z). For a more realistic ϕ(z) (1), the density of states ρ(ω) is given by
the formula similar to (13) at ω ¿ ω0 up to the terms of the order ln ln ω0

ω .
In this case the dependence ϕ(z) ∼ e−z/z0 at z À z0 is essential. Moreover,
there is always a wide region ω, where ρ(ω) is inversely proportional to ω.
For example, for the wave function of harmonic oscillator ϕ∗(z∗) ∼ e−z2∗ ,
(10) and (7) at ω ¿ ω0 give:

ρ(ω) =
C0

2ω(ln ω0
ω )

1/2[1 + C0(ln
ω0
ω )

1/2]2
. (16)

In the case of strong electric field that clamps electrons to the interface of

two media: ϕ2∗(z∗) ∼ e−z
3/2
∗ , and from (10) at ω ¿ ω0 we have

ρ(ω) =
2C0

3ω(ln ω0
ω )

1/3[1 + C0(ln
ω0
ω )

2/3]2
. (17)

Thus, for open electron systems the electron-impurity interaction lifts
completely degeneracy of the Landau levels. The density of states ρ(ω) in
the first order in the impurity concentration is given by Eq. (13) - (17). The
results can be easily generalized to the case of several types of impurities.
For example, the analogue of (14) is

ρ(ω) =
C−
ω

at ω > 0, (18)
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ρ(ω) =
C+
|ω| at ω < 0,

where C− and C+ are the total concentrations of repulsive and attractive
impurities.

Figure 1: The reduced density of states ωρ(ω)/C0 as a function of the energy
deviation from the Landau level for three different values of the impurity
concentration: C0 = 0.2 (solid line), C0 = 0.1 (dot line) and C0 = 0.05
(dash line). The Landau level degeneracy is completely lifted even at very
low impurity concentration. One can see a wide region where ρ(ω) ≈ C0/ω.

4. The formulas (13) - (17) for ρ(ω) are valid at

ω0e
−1/C0 ¿ ω, ω0 − ω À e−1/C0 . (19)

Beyond this region the higher order terms in C0 are important, due to their
large logarithmic factor ln[(ω0 − ω)/ω]. To study the Green’s function in a
wider region of ω let us consider the self-consistent approximation given by
the formulas (4), (5), (7). After substitution of (11) into (7) and (4), we get
an equation for G:

G =
1

ω
[1− C0 ln(1− ω0G)]. (20)

At ω ¿ ω0, ω0GÀ 1 this can be simplified:

G =
−C0
ω
[ln(−ω0G)− 1/C0] = −C0

ω
ln

µ
−eωNG

C0

¶
, (21)
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where we have introduced the new scale of energy ωN ≡ ω0 exp(−1/C0)C0/e.
After defining the new function y ≡ −ωG/C0, (21) takes the form:

y = ln(y ωN/ω) + 1. (22)

The equation shows that y depends only on one variable: y = y(ω/ωN). Let
us separate the real and imaginary parts of this function: y = A+ iB. From
(22) we get the system of two equations for real functions A and B, that
can be simplified to:

A = B/ tanB

eB/ tanB
sinB

B
=

ωNe

ω
. (23)

The last equation determines the density of states ρ(ω) = C0B/πω. We
need the solution B(ω/ωN ) ≥ 0. The function B(ω/ωN) monotonically
increases from zero at ω = ωN to B = π at ω/ωN → ∞. Near ω = ωN
the function B ≈ p

2(ω − ωN)/(ωN ). At ωN ¿ ω ¿ ω0 the function
B = π[1− 1/ ln(ω/ωN )] up to double logarithmic terms in ω/ωN . Thus, at
ω ¿ ω0 the density of states is given by a universal function of ω/ωN . At
C0 ¿ 1 the asymptotics of this function are:

ωρ(ω)/C0 =
p
2(ω − ωN )/(ωN)/π, at ω − ωN ¿ ωN ;

ωρ(ω)/C0 = 1− 1/ ln(ω/ωN), at ω À ωN .
(24)

We consider now the region |ω − ω0| ¿ ω0, where in the first order
in C0 ImG0(ω) has a singularity. The solution G(ω) of the self-consistent
equation (4),(5) does not have this singularity and monotonically falls to
zero at ω = ωx = ω0(1 + x0), where x0 is the solution of algebraic equation
x0 = C0[ln(1/C0) + 1 + ln(1 + x0)]. At C0 ¿ 1 we have

x0 ≈ C0[ln(1/C0) + 1 + C0 ln(1/C0)].

In the vicinity of ω = ωx, B(ω) ≈
p
2(ωx − ω)[1/(ω0C0)− 1/ωx]. In figures

1 and 2 we plotted the reduced density of states (ω/C0)ρ(ω/ω0) = B/π for
three different values of impurity concentration. One sees that at ω ¿ ω0
all three plots, while being shifted with ωN , have a universal shape. The
obtained solution gives the right behavior of the density of states ρ(ω) until
it goes to zero, i.e. in the region ωN < ω < ωx. Beyond this interval
there are ”tails” of the density of states that are presumably exponentially
small and can be found only after taking into account the diagrams with
intersection of impurity lines.
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Figure 2: The reduced density of states ωρ(ω)/C0 in logarithmic scale for
three different values of the impurity concentration: C0 = 0.2 (solid line),
C0 = 0.1 (dot line) and C0 = 0.05 (dash line). For each curve the value ωN
is marked. Near ω = ωN the reduced density of states is a universal function
of ω/ωN .

We note that the proposed model disagrees with the existing conception.
Some exact results of the theory of electron-impurity interaction in 2D elec-
tron systems are obtained in [8, 9, 10, 11] (for a review see [12]). However,
in these works two-dimensional point impurities were considered, and the
interaction potential V (r) (2) had the form

V (r) = u0δ(x− xi)δ(y − yi). (25)

Since the z-coordinate does not enter here, this potential corresponds to δ-
shaped wires, rather than point impurity while our analysis considers three-
dimensional point impurities. If one does not integrate over z-coordinate
with the impurity distribution function and the wave function of electrons,
one comes to the unphysical limit of δ-shaped wires.

We do not consider the exitation of electron levels in the interlayer di-
rection, since the energy separation between these levels is ∼ 0.1eV which is
much greater than all other energies in the problem (~ωc ∼ 0.001eV À ω0).
The novelty of our approach consists in considering distant impurities and
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demonstrating their essential role in the density of states. The electrons in
our approach remain effectively two-dimensional, and the model is mathe-
matically equivalent to that of 2D impurities with the strength distribution
∝ ϕ2(z).

Very recently some exact solution [13] has been proposed for the same
model with 3D impurity distribution. This exact solution has been obtained
as a particular example of more general solution (Eq. (44) of [9]) derived
for an arbitrary distribution of impurity strength. The result of [13] is in a
qualitative agreement with our result. Thus, the dependence ρ(ω) = C0/ω
in the main term at ω0e−1/C0 ¿ ω, ω0 − ω À e−1/C0 has been proved.
However, the exact solution works only for the lowest Landau level, while
our perturbative solution is valid for an arbitary Landau level. Besides, no
analitical formula for the whole region of parameters is obtained in [13] and
in the expansion in respect with the impurity concentration (Eq. (30) of
[13]) the term quadratic in concentration is missed. One can show from the
high-energy expansion of the Green’s function that this term must exist.
A more detailed comparison of two different approaches (nonperturbative
solution of Brezin et al. [9] and the perturbation theory) to the problem of
2D electron gas in magnetic field interacting with point impurities would be
interesting.

The work was supported by grants RFBR N 03-02-16121 and N 03-02-
16122 and INTAS N01-0791.
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