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Abstract

In this and a following note we present an essentially exact expres-
sion for the the steady and oscillatory (de Haas-van Alphen) free energy
of a (noninteracting) spin-split (g = 2) two dimensional electron gas
subject to a weak periodic potential and a normal uniform magnetic
field. The sole restriction is to oscillations corresponding to electron or-
bits entailing at most one Bragg reflection from a reciprocal lattice line.

PACS: 73.20.Dx, 71.25.Hc

1 Introduction

Since oscillatory effects were first seen in the thermodynamic properties
of two-dimensional materials [1, 2], activity in this area has grown signif-
icantly. There is particular interest in the class of charge transfer salts
based on the bis(ethylenedithio)tetrafulvalene molecule (BEDT-TTF salts)
[3] which form nearly ideal two-dimensional metals. A good deal of the-
oretical interest stems from the observation in κ-(BEDT-TTF)2Cu(NCS)2
and related compounds [4 - 6] of oscillations inconsistent with the highly
successful semi-classical theory [7] developed for three-dimensional materi-
als. A number of ad hoc explanations have been advanced to clarify this,
which are by and large semi-classical in nature. These include the use of
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the Peierls substitution in empirical band models [8] and frequency mod-
ulation via oscillations in the chemical potential [9]. The need for a fully
quantum mechanical treatment has been emphasized by Fortin and Ziman
[10] who indicated how proper tunneling corrections could be grafted into
the semi-classical network theory [11].

The aim of this note is to present a fully quantum mechanical expression
for the thermodynamic potential for an ideal two-dimensional metal in a
perpendicular uniform magnetic field. The sole limitation is in retaining
only terms to second order in the ratio of the energy gaps at zone lines to
the chemical potential. This is tantamount to using the usual nearly-free
electron approximation and is complementary to the tight binding model
introduced by Kim and Vagner [12], and presently extensively invoked. An
excellent review of this work is contained in [13].

To this end, consider a two-dimensional noninteracting electron gas oc-
cupying an area L2 in the xy plane subject to a weak lattice potential V (�r)
and a normal uniform magnetic field �B. The system is described by the
Hamiltonian

H =
1

2m∗
(�p− e

c
�A)2 + 2µ0BSz + V (�r) = H0 + V (1)

with �A = (−By, 0, 0). The electron g-factor is assumed to be 2, but it can
easily be modified in the following formulas. The eigenstates of H0 are

1√
2nn!L

(
eB

π~c
)1/4e−

1
2
(η−η0)2Hn(η − η0)e

ikxχσ,

E(k, n, σ) = µ∗0B(2n+ 1) + µ0Bσ, (2)

η = (eB/~c)1/2y, η0 = −(~c/eB)1/2k, σ = ±1.
The partition function to second order in V , where it is assumed that the
average potential vanishes, is

Z(s) = Tr[e−sH0 ] +
1

2
s2Tr[

Z 1

0
duV (�r)e−s(1−u)H0V (�r)e−suH0 ]. (3)

After carrying out the spin trace this has the form

Z(s) = 2 cosh(µ0Bs)[z0(s) + z2(s)],

z0(s) = L2(m∗/2π~)2µ∗0B)csch(µ0 ∗Bs). (4)
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Next the potential is expressed in terms of the reciprocal lattice vectors �K

V (�r) =
X
K 6=0

V �Ke
−i �K·�r. (5)

To evaluate z2(s) we require the matrix element

M =< n, k|V (�r)|n0, k0 >=
2π1/2

L

X
K 6=0

VKδ(k
0 − k −Kx)

Z ∞

−∞
dηe−

1
2
[(η−η0)2+(η−η00)2]

e−i(~c/eB)
1/2KyηHn(η − η0)√

2nn!

Hn0(η − η00)√
2n0n0!

. (6)

This gives

z2(s) =
s2

2π

X
K,K0

V ∗KVK0

Z ∞

−∞
dkdk0δ(k0 − k −Kx)δ(k

0 − k −K 0
x)·

Z 1

0
du

Z ∞

−∞
dηdη0ei(~c/eB)

1/2(K0
yη
0−Kyη)SS0 (7)

with

S =
∞X
n=0

e−
1
2
[(η−η0)2+(η0−η0)2]Hn(η − η0)Hn(η

0 − η0)

2nn!
e−suµ

∗
0B(2n+1). (8)

Since ∞X
n=0

e−
1
2
[X2+Y 2]Hn(X)Hn(Y )

2nn!
e−an =

ea/2√
2 sinh a

exp{−1
4
[(X + Y )2 tanh

a

2
+ (X − Y )2 coth

a

2
]}, (9)

we have for z2(s)

Ls2

8π2

X
K,K0

V ∗KVKδKx,K0
x

Z ∞

−∞
dkdk0

Z 1

0

duδ(k − k0 +Kx)p
sinh(2µ∗0Bsu) sinh(2µ∗Bs(1− u))Z ∞

−∞
dηdη0ei(~c/eB)

1/2(K0
yη
0−Kyη)

exp{−1
4
[(η+ η0 − 2η0)2 tanh(suµ∗0B) + (η+ η0 − 2η00)2 tanh(s(1− u)µ∗0B)]−
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1

4
(η − η0)2[coth(suµ∗0B) + coth(s(1− u)µ∗0B)]}. (10)

The η integrations are essentially Gaussian and are easily worked out, fol-
lowing which we have

z2(s) =
Ls2

8π
(
eB

~c
)1/2

X
K,K0

V ∗KVK0δKx,K0
x

Z ∞

−∞
dη0dη

0
0·

Z 1

0

dup
sinh(µ∗0Bsu) sinh(µ∗0Bs(1− u))

1p
(T1 + T 01)(T2 + T 02)

·

exp[i(eB/~c)1/2K−
η0T1 + η00T 01
T1 + T 01

] exp[− T1T
0
1

T1 + T 01
(η0 − η00)

2]·

exp[−1
4
(~c/eB)

µ
K2−

T1 + T 01
+

K2
+

T2 + T 02

¶
]δ(η00 − η0 + (~c/eB)1/2Kx), (11)

where T1 = tanh(µ∗0Bsu),T2 = 1/T1 and the prime on T denotes that u is
replaced by 1 − u. K± = K 0

y ±Ky. The η0 integrations simply give delta
functions and the result simplifies to

z2(S) =
L2s2

8π

µ
eB

~c

¶
csch(µ∗0Bs)

X
K 6=0

|VK |2·

Z 1

0
exp

µ
−eB
~c

K2 sinh(µ
∗
0Bsu) sinh(µ

∗
0su

0))
sinh(µ∗0Bs)

¶
du. (12)

Finally, the partition function (per unit area) to second order in the
lattice potential is

Z(s) = Z0(s) + Z2(s),

Z0(s) =
m∗

2π~2
µ∗0B

cosh(µ0Bs)

sinh(µ∗0Bs)
, (13)

Z2(s) =
m∗

4π~2
(µ∗Bs2)

cosh(µ0Bs)

sinh(µ∗0Bs)

X
�K 6=0

|VK |2G( �K, s),

G( �K, s) =

Z 1

0
exp

·
−�K sinh(µ

∗
0Bsu) sinh(µ

∗
0Bs(1− u))

(µ∗0B) sinh(µ∗0Bs)

¸
du.

The free energy and magnetization corresponding to the term Z0(s) have
been treated in detail in [14]. We have for the thermodynamic potential
Φ = F − nζ, where F is the Helmholtz free energy,

Φ0 = − πm∗

2π~2β
(µ∗0B)

Z c+i∞

c−i∞
eβζs cosh(µ0Bβs)

s sin(πs) sinh(µ∗0Bβs)
ds

2πi
. (14)
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For future reference we just consider the oscillatory part due to the imagi-
nary poles sk = iπk/µ∗0Bβ k = ±1,±2, . . .

Φosc0 =
m∗µ∗0B
π~2β

∞X
k=1

(−1)k+1
k

cos(m∗πk/m) cos(πkζ/µ∗0B)
sinh(π2k/µ∗0Bβ)

. (15)

At zero temperature this can be summed exactly to give

Φ0 =
m∗(µ∗0B)2

24π3~2
([π2 − 3(λ+ α)]p + [π

2 − 3(λ− α)]p), (16)

where λ = ζ/µ∗0B, α = m∗/m and []p denotes the periodic extension from
[−π, π].

2 Effect of the lattice in a weak magnetic field

The lattice contribution to the free energy at T = 0 is

F2 =

µ
m∗

4π~2

¶
(µ∗0B)

X
K 6=0

|VK |2
Z c+i∞

c−i∞
eζs
cosh(µ0Bs)

sinh(µ∗0Bs)
G(K, s)

ds

2πs
. (17)

After expanding in ascending powers of µ∗0B, we have to second order,

Fno
2 =

m

8π~2
X
K 6=0

|VK |2
Z c+i∞

c−i∞
ds

2πi

eζs

s
{ 1F1(1; 3/2;−1

4
�Ks)

+
1

2
(µ∗0B)

2[(α2 − 1
3
)s2 1F1(1; 3/2;−1

4
�Ks) +

�K
45

s3 1F1(3; 7/2;−1
4
�Ks)]},

(18)
where 1F1 is the confluent hypergeometric function. Finally, the inverse
Laplace transforms of 1F1 can be evaluated to yield

Fno
2 =

³ m

8π~2
´X
K 6=0

|VK |2{[1−
p
1−AKΘ(1−AK)]+

1

2

µ
µ∗0B
ζ

¶2
[
1

4
(α2− 1

3
)A2K

Θ(1−AK)

(1−AK)3/2
+
1

6
A2K

(38A
2
K −AK + 1)

(1− 4AK)5/2
Θ(1−AK)]},

(19)
where AK = 4ζ/�K and Θ denotes the unit step function. Were the field
dependence of ζ to be of no importance, the corresponding contribution to
the susceptibility would be

χ
(2)
0 =

³ m

8π~2
´ (µ∗0)2
4ζ2

A2KΘ(1−AK)

(1−AK)5/2
[(α2 − 1

3
) +

2

3

(38A
2
K −AK + 1)

(1− 4AK)
]. (20)
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The next note in this series will deal with the effect of the lattice potential
on the free energy and magnetization. In particular, it should bear on various
problems in interpreting the de Haas - van Alphen oscillations for various
quasi 2D systems.
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