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Abstract

We investigate the propagation of short laser pulses in arrays of
coupled nonlinear waveguides. In the experiment we inject intense 60-
fs pulses into planar silica waveguide arrays, with the laser tuned to
the anomalous dispersion regime. Depending on the excitation con-
ditions, either collapse dynamics is observed, or trapping of the pulse
in a single waveguide. The collapse dynamics in these intermediate
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dimensionality structures are similar to those previously observed in
the perfect two-dimensional configuration. On the other hand, an ex-
tremely sharp transition is observed, from strong diffraction at low
powers to strong localization at high powers, when the pulses are in-
jected into a single waveguide. This behavior suggests the existence of
a range of parameters where quasi-stable spatiotemporal solitons may
form. Our numerical simulations demonstrate that high-order disper-
sion is essential for an effective arrest of the collapse in these Kerr
media, and lend further support to the interpretation of the experi-
mental data as an indication for quasi-stable propagation.

PACS: 42.65.Tg, 42.65.Sf, 42.65.Jx, 42.65.Wi

Optical solitons are localized electromagnetic waves that propagate in
nonlinear media where dispersion and/or diffraction are present. They are
the most thoroughly studied form of solitons, in view of their potential ap-
plication in optical communications and switching devices. One-dimensional
optical solitons, that exhibit confinement in one transverse dimension (ei-
ther spatial or temporal), have been the subject of extensive theoretical and
experimental studies [1]. Multidimensional solitons, on the other hand, and
spatiotemporal solitons (STS) in particular, have received far less attention.
A most intriguing type of STS forms when diffraction and dispersion have
the same magnitude. In this situation the nonlinearity may simultaneously
balance both, leading to the formation of an STS that is symmetrical in
all transverse dimensions. Such STS are sometimes called "light bullets",
and were originally proposed in the context of media with a positive Kerr
nonlinearity and anomalous dispersion [2]. However, even a simple analysis
can show that only one-dimensional Kerr solitons are stable, while multi-
dimensional solitons are not [2]. This instability occurs since the slightest
perturbation of the soliton’s power or size results in a breakup of the delicate
balance between dispersion, diffraction and the nonlinearity. If dispersion
and diffraction win, the result is a spread-out of the wave packet. On the
other hand, if the nonlinearity becomes dominant, the wave packet expe-
riences a catastrophic self-focusing in all transverse dimensions, known as
"collapse". It should be emphasized, though, that such a mathematical col-
lapse to a singularity has not been observed experimentally. It is usually
avoided in experiments due to higher-order nonlinearities and dispersion,
that become increasingly important during the collapse.

Collapse dynamics in Kerr media were recently demonstrated using a
planar glass waveguide, where the pulse disperses in one dimension and
diffracts in another [3]. This particular configuration is one example of a
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"1+2" case, where the "1" denotes the direction of propagation and the
"2" refers to the number of transverse dimensions in which the wave packet
can diffract or disperse. In that experiment simultaneous spatial and tem-
poral self-focusing was observed in the anomalous dispersion regime, and
multi-photon absorption (MPA) and stimulated Raman scattering (SRS)
were suggested as possible mechanisms that arrest the collapse. In paral-
lel, STS have been generated in bulk quadratic media, in which case stable
propagation was demonstrated in the temporal dimension and in one spatial
dimension, while diffraction occurred in the remaining spatial dimension [4].
Thus, the realization of a true STS, especially in Kerr media, remains an
important goal in the field of soliton physics.

A particularly interesting situation arises when a pulse propagates in
structures with intermediate dimensionality, such as planar arrays of cou-
pled one-dimensional waveguides. Such periodic arrays are one-dimensional
photonic crystals, and in many respects their behavior is intermediate be-
tween one-dimensional ("1+1") and two-dimensional ("1+2"). Diffraction
in these structures takes the form of a weak coupling between adjacent
waveguides, and leads to a characteristic discrete diffraction where the light
distribution has the form of a Bessel function [5]. Spatial solitons that form
in these arrays are known as discrete solitons. They have been studied ex-
tensively both theoretically [6] and experimentally [7], and shown to posses
several novel and intriguing dynamical properties. For example, both stable
and unstable spatial solitons have been demonstrated, and the difference of
energy between the two (called the Peierls-Nabarro potential) accounts for
the tendency of discrete solitons to lock to the waveguide direction at high
powers, or to acquire transverse momentum and shift laterally, depending
on the input parameters [8]. Moreover, the sign and value of diffraction in
waveguide arrays is a function of the propagation direction [9], with impor-
tant consequences to the linear and nonlinear properties [10]. These special
properties of structures with intermediate dimensionality, coupled with the
known dependence of STS stability on the number of transverse dimensions,
provide a strong motivation for the study of STS and collapse dynamics in
planar waveguide arrays.

The properties of discrete solitons have been studied extensively in Al-
GaAs waveguide arrays [7, 8, 10]. However, AlGaAs has a normal dispersion,
and therefore cannot support STS. Thus the case of anomalous dispersion,
which is a prerequisite for the formation of STS, has been studied only theo-
retically. These studies have concluded that the differences between discrete
and continuum STS are expected to be significant. In particular, it has been
suggested that the instability and collapse of STS in the planar geometry
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would disappear in coupled waveguide arrays. Using coupled mode the-
ory, in the form of linearly coupled one-dimensional nonlinear Schrödinger
equations (NLSE), Aceves et al. have shown that the discrete nature of
the structure effectively acts as a saturable nonlinearity, and instead of a
catastrophic collapse, energy localization in a single waveguide is expected,
accompanied by strong temporal compression [11]. The localization and
temporal compression in an array were demonstrated numerically [11]. Self
trapping was also demonstrated numerically [12]. However, the necessary
initial conditions for such STS-like behavior were not clearly identified.

In this work we present experimental evidence for such strong spatial
localization in a single waveguide, when the array is excited in the anomalous
dispersion regime. We use arrays of silica glass, where the dispersion is
anomalous for laser pulses with wavelengths in the optical communication
window (λ ≈ 1.5µm). We employ two different experimental configurations,
that result in different initial conditions: a broad input beam and single
waveguide excitation. The behavior that we observe with a broad input
beam is reminiscent of the collapse dynamics in the "1+2" case [3]. On
the other hand, with single waveguide excitation we observe an extremely
sharp transition, as a function of the input power, from a regime of strong
diffraction to a regime of strong spatial localization. The broad regime of
strong spatial localization, in which the beam locks to a single waveguide,
suggests that a range of parameters may exist where quasi-stable STS may
form. We also present numerical simulations that demonstrate that high-
order dispersion is essential for an effective arrest of the collapse, and show
that at certain powers a quasi-stable asymmetric pulse indeed forms. This
lends further support to the interpretation of the experimental data as an
indication for quasi-stable propagation.

The sample that we used is 2.5 cm long, and consists of several one-
dimensional periodic arrays, each with 101 weakly-coupled optical waveguides,
buried inside a layer of flame hydrolysis deposited silica. The core of each
single-mode waveguide is germanium-boron doped silica, has a square cross
section of 4µm x 4µm, and is surrounded by a silica cladding. The refractive
index step between the cladding and the core is ∆n = 0.75%. The period of
the different arrays d (see Fig. 1) varies between 11µm and 13µm, in order
to modify the degree of coupling between adjacent waveguides. We inject
transform-limited 60 fs pulses, at a wavelength of 1520 nm and with peak
powers up to 2MW, generated by a Spectra Physics OPA 800 optical para-
metric amplifier. The spatial profile of the input beam is varied as to excite
just one or several waveguides. A microscope objective and a cylindrical lens
are combined in order to obtain an elliptical input beam, ' 170µm wide,
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Figure 1: Experimental setup and sample cross-section.

with a flat phase front at the input facet of the sample. This arrangement
allows matching of the beam size, and thereby the diffraction length, to
the dispersion length. The cylindrical lens may be removed to allow single
waveguide excitation. The output facet of the sample is imaged onto an
infrared camera. A portion of the beam is directed to a spectrometer, and
another portion to a non-collinear autocorrelator. The 100µm thick BBO
crystal in the autocorrelator allows accurate measurements of pulse dura-
tions down to 10 fs, and the glass in the optical path to the autocorrelator
introduces a systematic error of less than 10 fs in the measurements. An
aperture, placed in an image plane of the output facet, allows temporal and
spectral characterization of the central part of the output beam. The spatial
cross-section, power spectrum, autocorrelation and output power are mea-
sured as functions of the input power. The experimental data shows little
variations between the different arrays, and the results presented here are
typical to all of them.

Fig. 2 presents images of the sample’s output facet, recorded under dif-
ferent excitation conditions. Fig. 2a and Fig. 2b were both obtained with
a broad input beam (i.e. equal dispersion and diffraction lengths). The
three images in Fig. 2a depict a stable spatial soliton, and correspond to
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Figure 2: Images of the sample’s output facet under different excitation con-
ditions: (a) broad input beam (equal dispersion and diffraction lengths): top
to bottom - 0.09MW, 0.45MW, 0.74MW; (b) the unstable mode is excited
with the broad input beam: top - low power; bottom - high power; (c) single
waveguide excitation: top - 0.07MW; bottom - 0.44MW.

the lowest input power, maximum spatial compression and maximum input
power (top to bottom). It can be seen that as the power of the incoming
beam is increased, the beam width first contracts to about 10µm, and then
gradually broadens. At the minimum width most of the pulse energy is
concentrated in a single waveguide, with two small satellite pulses in the
neighboring waveguides. A small tilt of the input facet relative to the input
beam allows excitation of an unstable soliton, which is peculiar to the array
[8]. As seen in Fig. 2b, the self-focusing obtained in this case is rather weak.
In contrast, the spatial compression of the stable soliton is remarkable. It is
substantially stronger than that observed in the case of normal dispersion
[7] and is also more pronounced than the compression in the perfect planar
configuration [3].

Next we focus on the dynamics of the stable spatial mode of the array.
Its evolution as function of input power is presented in Fig. 3 in the form of
10 spatial cross sections of the beam at the output facet. The correspond-
ing variations of the beam width and pulse duration are plotted in Fig. 5a,
which shows that the strongest spatial compression lags slightly behind the
maximum temporal compression. This may be partly due to a small mis-
match between the dispersion and diffraction lengths. More importantly,
and in contrast with the results obtained under similar conditions in the
"1+2" case [3], there is a clear asymmetry in the compression: the output
beam decreases by a factor of ≈ 10 relative to its width at the input facet,
but the pulse duration decreases only slightly (by less than 10%). This be-
havior demonstrates that the symmetry between the spatial and temporal
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Figure 3: Spatial cross sections at the output facet, measured as function of
input peak power, with a broad input beam.
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Figure 4: Spatial cross sections at the output facet, measured as function of
input peak power, for single waveguide excitation.
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coordinates is broken, and strongly suggests that the sudden onset of sig-
nificant nonlinear effects, as the pulse compresses into a single waveguide,
induces temporal broadening followed by diffraction. Thus the symmetry
breaking in the array indeed restrains the collapse. Except for the pro-
nounced asymmetry described above, the behavior that we observe with a
broad input beam is very similar to the quasi-collapse in two dimensions
[3]. Yet, the dynamics at high input powers, beyond the point of maximum
compression, reveals more subtle differences between the two geometries. As
the spectral data in Fig. 5b demonstrate, the spectrum of the output beam
mainly broadens before maximum compression is achieved but beyond that
point the spectrum strongly shifts to longer wavelengths. The shift is due to
SRS and is accompanied by a significant broadening of the pulse (Fig. 5a).
This effectively breaks the symmetry between the spatial and temporal co-
ordinates and stops the compression. The broadened pulse then starts to
diffract. The diffraction is more regular than in the two-dimensional case,
where a break-up of the beam to filaments was observed at high input power
[3]. Also in contrast with the two-dimensional case [3], in the present ex-
periment the output power is proportional to the input power, and there is
no evidence for nonlinear loss. This fact suggests that the maximum power
density attained within the array is lower, which also shows that the array
restrains the collapse more effectively.

A totally different picture is observed when the input beam is focused
into a single waveguide. At low input powers the beam strongly diffracts [top
image in Fig. 2c], and shows the characteristic Bessel function light distrib-
ution of discrete diffraction [5]. Beyond a certain, well-defined input power,
however, the beam abruptly contracts, and all the power is essentially local-
ized in one waveguide [bottom image in Fig. 2c]. The spatial distribution at
the output facet then shows very little changes as the input power is further
increased. The variation of the beam width at the output facet as function
of the input power and the corresponding changes of the pulse duration and
spectrum are plotted in Figs. 5a and 5c. The evolution of the spatial profile
as function of input power is seen in Fig. 4, where 11 spatial cross sections of
the beam at the output facet are plotted. Two different regimes are clearly
seen, with an extremely sharp transition between them. Also note that the
pulse duration at the output facet increases monotonically, and that follow-
ing the abrupt localization in a single waveguide the temporal broadening
and red shift due to SRS increase dramatically. As in the case of broad beam
excitation, the output power is proportional to the input power and there
is no evidence for nonlinear loss. In particular, this means that the fixed
spatial distribution that we observe does not correspond to a well-defined
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Figure 5: Spatial, temporal and spectral data obtained with different excita-
tion parameters: (a) the variations, as function of input power, of the beam
width (squares) and pulse duration (triangles), for a broad input beam (full
symbols) and for single waveguide excitation (open symbols); (b) and (c)
show the evolution of the output spectrum as function of the input peak
power for a broad input beam and for single waveguide excitation, respec-
tively (the spectral curves are displaced vertically for better clarity, and the
numbers next to the traces indicate the input peak powers in MW).
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pulse energy. Rather, the pulse energy increases as the pulse broadens in the
time domain. The peak power at which the trapping occurs is ≈ 0.4× 106
W, which is 100 times lower than the peak power of a 60 fs one-dimensional
soliton, but consistent with a pulse compressed to 6 fs. Clearly, other effects
must intervene to broaden the pulse before it reaches the output facet of the
sample. We also note that the observed variation of the output wave packet
size as function of its energy is exactly the opposite of that expected of a
perfect one-dimensional light bullet in Kerr media [2]. This means that the
localization in a single waveguide should not be understood as just a trivial
decoupling of the waveguides due to the nonlinearity.

It is clear from the experimental data that higher-order nonlinearities,
beyond the Kerr nonlinearity, significantly modify and complicate the dy-
namics of the propagating pulse. In particular, the temporal compression
proposed by Aceves et al. [11] is not observed in our experiment. SRS is
an obvious reason for the deviations that we observe from the theoretical
predictions, and these may also result from high-order dispersion, which
becomes significant as the pulse strongly compresses and as its spectrum
broadens and shifts to longer wavelengths. Nevertheless, the broad regime
of strong spatial localization that we observe in the case of single waveguide
excitation suggests the existence of a range of parameters where quasi-stable
propagation may actually occur. Since we are only able to characterize the
pulses at the sample’s output facet, our experiment does not give a direct and
conclusive evidence for such quasi-stable propagation. However, it is very
unlikely that the pulse, which is initially localized in a single waveguide,
undergoes some unexpected dynamics inside the sample before re-emerging
at the output facet in a localized state. More likely, once the nonlinearity
is strong enough to overcome the diffraction of the narrow input beam, the
pulse is trapped in a single waveguide, and propagates a distance of several
centimeters without significantly changing its shape. Such a trapped pulse
is definitely not a symmetrical optical bullet [2], but it is stable in the sense
that its shape does not vary dramatically as the input power is further in-
creased. In particular, as the input power is increased, self focusing does
not completely overcome the other processes that tend to broaden the wave
packet, and the collapse is arrested. On the other hand, it is obvious that
the strong SRS at very high input powers must result from a strong tempo-
ral contraction of the pulse, and since this contraction is not observed in the
experiment, it is most likely that at these input powers the pulse initially
contracts, and then broadens again, as a result of high-order dispersion.

To demonstrate these effects we have compared our experimental results
to two-dimensional numerical simulations of the NLSE [3] that use the split-
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Figure 6: Data from a numerical simulation, showing the evolution of the
spatiotemporal profile of the pulse as it propagates through the sample.
Each frame is a spatiotemporal contour plot of the pulse at a given dis-
tance from the input facet, and the horizontal and vertical coordinates
are time and space, respectively. The size of each window is 119fs by
114µm. The distances from the input facet are (from top to bottom):
2.92, 5.83, 17.5, 26.25, 35, 49.6 and 64.17mm. The parameters of the simu-
lation are discussed in the text (note: the window used in the calculations
is 4 times larger than that displayed here, in both transverse directions).

step beam propagation method and take into account SRS, MPA, high-order
dispersion (third and fourth orders) and the periodic variation of the refrac-
tive index in the array. We find that high-order dispersion is indeed essential
for an effective arrest of the collapse. It also induces temporal broadening,
limits the spectral broadening and quenches MPA, all in agreement with the
experiment. The simulations also show that at intermediate input powers
the high-order dispersion results in the formation of an asymmetric pulse,
which propagates a finite distance with very slow changes of its envelope.
The shape of this trapped pulse depends on the magnitude and sign of the
high-order dispersion terms.

Fig. 6 shows a typical result of the simulation, obtained with a 60 fs
Gaussian pulse, an input peak power of 3.1× 105 W, an input beam width
of 25µm, and a sample with a period d of 13µm. The third-order dispersion
coefficient in this simulation is β3 = 0.3 ps3/Km (about twice the value
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obtained from the literature [13] and from the Sellmeier equation), and the
fourth-order dispersion coefficient is β4 = −4.4×10−4ps4/Km (the value ob-
tained from the Sellmeier equation). Other parameters of silica glass, such as
the group velocity, group velocity dispersion, nonlinear refractive index and
Raman coefficients are taken from the literature [13]. Weak MPA is assumed,
in the form of a six-photon absorption coefficient of 2×10−65Watt−5cm9 [14].
Fig. 6 shows the evolution of the spatiotemporal profile of the pulse, each
frame being a spatiotemporal contour plot of the pulse at a given distance
from the input facet (the horizontal and vertical coordinates are time and
space, respectively). The figure demonstrates how the Gaussian input wave
packet (frame 1) couples into the waveguides (frame 2), and then starts dif-
fracting, while compressing in the time domain (frame 3). This occurs due
to the asymmetry of the input pulse, and an input power that results in the
nonlinear length being shorter than the dispersion length but longer than
the diffraction length. Eventually the strong temporal focusing increases
the power density enough to induce spatial focusing (frame 4), and after
propagating 3.5 cm through the sample the pulse is localized essentially in a
single waveguide (frame 5). At this point high-order dispersion comes into
play, arresting the collapse, and the compressed pulse starts diffracting and
dispersing very slowly - note how little it changes as it propagates the last
1.5 cm (frames 6 and 7). The slow shift of the pulse relative to the center of
the frame, which moves at the average group velocity, is due to third-order
dispersion. High-order dispersion also leads to the eventual spread-out of
the wave packet, after propagating a distance of ≈ 8 cm through the sample
(not shown). A strong spectral broadening, due to self-phase modulation
and SRS, accompanies the above dynamics. Fig. 7 shows the spectra at the
input, at the point of maximum compression (3.5 cm behind the input facet,
corresponding to frame 5 of Fig. 6) and 7 cm behind the input facet. The
strong broadening and red shift of the spectrum are evident, and explain
the effectiveness of the high-order dispersion in arresting the collapse.

The results of the numerical simulation presented here are in good agree-
ment with the experimental data. In particular, the quasi-stable propagation
after the pulse is trapped supports the interpretation of the experimental
data as an indication for bullet-like propagation. The main discrepancy is
the fact that the temporal compression is not observed in the experiment.
This, however, may be due to technical limitations of our autocorrelator.
Another conclusion from our simulations is that the eventual spread-out of
the wave packet occurs earlier without fourth-order dispersion. This conclu-
sion is in agreement with a recent theoretical analysis [15], which predicts
that a small and negative fourth-order dispersion arrests the collapse and
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Figure 7: Calculated spectra at different distances from the input facet.

stabilizes optical bullets in Kerr media with dimensionality d ≤ 2 (in the
absence of SRS), and thus lends further support to our interpretation of the
experimental data.
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