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Abstract

Recently discovered exact integrability of zero-dimensional replica
field theories [E. Kanzieper, Phys. Rev. Lett. 89, 250201 (2002)] is ex-
amined in the context of Ginibre Unitary Ensemble of non-Hermitean
randommatrices (GinUE). In particular, various nonperturbative fermi-
onic replica partition functions for this randommatrix model are shown
to belong to a positive, semi-infinite Toda Lattice Hierarchy which,
upon its Painlevé reduction, yields exact expressions for the mean level
density and the density-density correlation function in both bulk of the
complex spectrum and near its edges. Comparison is made with an ap-
proximate treatment of non-Hermitean disordered Hamiltonians based
on the ‘replica symmetry breaking’ ansatz. A difference between our
replica approach and a framework exploiting the replica limit of an
infinite (supersymmetric) Toda Lattice equation is also discussed.
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1 Introduction

How replicas arise.–In physics of disorder, all observables depend in
highly nonlinear fashion on a stochastic Hamiltonian hereby making calcu-
lation of their ensemble averages very difficult. To determine the latter in an
interactionless system, one has to know spectral statistical properties of a
single particle Hamiltonian H contained in the mean product of resolvents,
G(ε) = tr (ε−H)−1. Each of the resolvents can exactly be represented as
a ratio of two integrals running over an auxiliary vector field ψ which may
consist of either commuting (bosonic) or anticommuting (fermionic) entries.
In the random matrix theory limit, when a system Hamiltonian is modelled
by an N × N random matrix H of certain symmetries, the resolvent G(ε)
equals

G(ε) = i

Z
Dψ̄Dψ ψ̄`ψ` e

−iSH[ε; ψ̄,ψ]
µZ

Dψ̄Dψ e−iSH[ε; ψ̄,ψ]
¶−1

(1)

where SH[ε; ψ̄,ψ] = ψ̄` (εδ` `0 −H` `0)ψ`0 , ψ is an N—component vector ψ =
(ψ1, · · · ,ψN ), ψ̄ is its proper conjugate, and Im ε 6= 0. Summation over
repeated Latin indices is assumed.

Although exact, this representation is a bit too inconvenient for a non-
perturbative averaging due to the awkward random denominator. To get
rid of it, Edwards and Anderson [1] proposed a replica method based on the
identity

ln Z = lim
n→±0

Zn − 1
n

. (2)

Upon assigning to Z a meaning of a quantum partition function

Z(ε) = iN
Z
Dψ̄Dψ e−iSH[ε; ψ̄,ψ], (3)

the average resolvent hG(ε)i can be determined through the limiting proce-
dure

hG(ε)i = lim
n→0

1

n

∂

∂ε
hZn(ε)i (4)

involving the average of the partition function

Zn(ε) = inN
Z |n|Y

α=1

Dψ̄(α)Dψ(α) e−iSH[ε; ψ̄(α),ψ(α)] (5)
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describing n identical noninteracting copies, or replicas, of the initial disor-
dered system (3). The nature of replicated fields ψ(α) in (5) is determined
by the sign of n in (2); they are bosonic for n < 0 and are fermionic oth-
erwise. Clearly, the procedure (4) assumes mutual commutativity of the
replica limit n → 0, an ensemble averaging h· · · i, and the differentiation
operation ∂/∂ε.

Contrary to (1), the representations (4) and (5) contain no random de-
nominator hereby making a nonperturbative in disorder calculation of the
resolvent G(ε) viable. Depending on the origin of auxiliary fields ψ(α) in
(5), such a disorder averaging supplemented by identification of physically
relevant low lying modes of the theory, would eventually result in effective
replica field theory [2] (also called a nonlinear replica σ model) defined on
either a noncompact [3, 4] or a compact [5] manifold.

Why the replica limit is problematic.–Seemingly innocent at first
glance, the above field theoretic construction appears to be counterintuitive
and rising fundamental mathematical questions [6]. Indeed, due to a par-
ticular integration measure which makes no sense for n other than integers,
the average of (5) cannot directly be used to implement the replica limit (4)
determined by the behaviour of Zn(ε) = hZn(ε)i in a close vicinity of n = 0.
To circumvent this difficulty (which reflects [7] a true, continuous geometry
[6] of replica field theories), one may at first evaluate the average replica
partition function Zn(ε) for all n ∈ Z+ (or Z−), and then analytically con-
tinue the result into a vicinity of n = 0 in order to make taking the replica
limit (4) well defined and safe. This route, however, is full of pitfalls.

In the context of mesoscopic physics, the subtleties involved in carrying
out the replica limit were discussed at length in Refs. [8-13] . All these
studies have debated whether or not the nonperturbative [14] sector of replica
field theories is reliable. This issue is of conceptual importance yet is not
pure academic because the replica field theories are among a very few means
available to address problems involving both disorder and interactions, about
which the famous Efetov’s supersymmetry approach (SUSY) — a prime tool
in studying noninteracting disordered systems for the last two decades — has
nothing to say [15].

Approximate treatment of replicas.–In the early study [8] by Ver-
baarschot and Zirnbauer, a nonperturbative sector of nonlinear replica σ
models was thoroughly examined in the context of the Random Matrix The-
ory [16] (RMT). Having mapped the problem of eigenvalue correlations in
the Gaussian Unitary Ensemble (GUE) of large random matrices onto both
bosonic and fermionic replica field theories, these authors had found that
the two formulations of nonlinear replica σ model supplied different results
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for the density-density correlation function, both apparently differing from
the correct one firmly established by other methods [16, 17]. These find-
ings led the authors to conclude that the replica method is ‘mathematically
ill founded’. The failure of the replica method to correctly account for all
nonperturbative contributions to a physical observable was attributed to a
nonuniqueness of the analytic continuation of replica partition functions in
the replica parameter n away from (either negative or positive) integers.
This standpoint, recently reiterated by Zirnbauer [12], has formed a pre-
vailing opinion in the literature that the replica method may at best be
considered as a perturbative tool not being able to reproduce truly nonper-
turbative results accessible by alternative SUSY technique.

The paper that challenged the opinion about inner deficiency of replica
field theories and triggered their further reassessment was that of Kamenev
and Mézard [9]. Based on ideas of replica symmetry breaking originally
devised in the theory of spin glasses [18], these authors came up with a
procedure that eventually produced nonperturbative results for the GUE
density-density correlation function out of fermionic replicas, albeit in an
asymptotic region describing evolution of a quantum system at times not
exceeding the Heisenberg time. (Subsequently, this approach was applied
to a number of problems such as the energy level statistics in disordered
metallic grains beyond [10] the RMT limit, spatial correlations in Calogero-
Sutherland models [19, 20], a microscopic spectral density of the Euclidean
QCD Dirac operator [21], and energy level fluctuations in Ginibre ensembles
of non-Hermitean random matrices [22]).

Briefly summarised (for a detailed exposition the reader is referred to
original publications [9, 10] as well as to a critical analysis [12] by Zirnbauer),
the framework [9] rests on an approximate saddle point evaluation of replica
partition functions represented in terms of |n|—fold integrals containing a
large parameter. In doing so, nontrivial saddle point configurations with
so-called broken replica symmetry have to be taken into account in order to
reproduce nonperturbative results. While leading to asymptotically correct
expressions for spectral fluctuations in the Gaussian ensembles possessing
unitary, orthogonal and symplectic Dyson’s symmetries, the procedure[9]
cannot be considered as mathematically satisfactory because it involves a
nonexisting [9, 12] analytic continuation of replica partition functions to a
vicinity of n = 0, the domain which is crucially important for implementing
the replica limit.

Towards exact integrability of replica σ models.–Analysis of Refs.
[8-12] (see also Ref. [13]) hints that approximate evaluation of replica parti-
tion functions is the key point [23] to blame for inconsistencies encountered
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in the procedure of analytic continuation away from n integers. In such a sit-
uation, leaning towards exact calculational schemes in replica field theories
is a natural move.

A step in this direction was taken in the recent paper [23], where par-
tition functions for a number of fermionic replica σ models were shown to
belong to a positive, semi-infinite Toda Lattice Hierarchy extensively studied
in the theory of nonlinear integrable systems [24]. In conjunction with the
τ -function theory [25 - 28] of the six Painlevé transcendents (which are yet
another fundamental object in the theory of integrable hierarchies), this ob-
servation led to exact evaluation of replica partition functions for a number
of random matrix ensembles in terms of Painlevé transcendents. Result-
ing nonperturbative Painlevé representations (which implicitly encode all
hierarchical inter-relations between partition functions with various replica
indices) were used to build a continuation of Zn’s away from n ∈ Z+. While
not addressing the important issue of uniqueness of such an analytic contin-
uation, the route of Ref. [23] has yielded — for the first time — exact non-
perturbative results for random matrix spectral statistics out of fermionic
replicas.

More recently, Splittorff and Verbaarschot [29, 30] have suggested that
such nonperturbative results could directly be obtained from the replica limit
of an infinite Toda Lattice equation without Painlevé reduction whatsoever.
In fact, the approach [29, 30] rests on the observation that, if properly nor-
malised, the fermionic and the bosonic replica partition functions of a zero-
dimensional interactionless system form a single, infinite (that is, supersym-
metric) Toda Lattice Hierarchy belonging to its either positive (fermionic)
or negative (bosonic) branch. While greatly simplifying calculations of spec-
tral correlation functions through a remarkable bosonic-fermionic factorisa-
tion [30], the framework developed by Splittorff and Verbaarschot is, to a
large extent, supersymmetric in nature as it explicitly injects [31] a missing
bosonic (or fermionic) information to otherwise fermionic (or bosonic) like
treatment.

In the present paper, a detailed account is offered of a nonperturbative
approach [23] to zero dimensional fermionic replica field theories which is
based on exact Painlevé representation of replica partition functions with
the emphasis strongly placed on technical details. Specifically, we focus on
the Ginibre ensemble [32] of complex random matrices with no further sym-
metries. This particular random matrix model is of special interest in the
light of recent findings that associate statistical models of normal random
matrices with integrable structures of conformal maps and interface dynam-
ics at both classical [33] and quantum scales [34]. (The reader is referred

105



to Ref. [35] for an introductory exposition of these recent developments
and to Ref. [36] for a review of other physical applications and extended
bibliography).

The paper is organised as follows. In Section 2, we collect the basic defini-
tions and present the major results regarding the Ginibre Unitary Ensemble
of random matrices. In Section 3, a fermionic replica field theory approach
to non-Hermitean complex random matrices is outlined and integrability of
the field theory is established. The integrability which manifests itself in
emergence of a positive, semi-infinite Toda Lattice equation for replica par-
tition functions and also results in exact representations of replica partition
functions in terms of Painlevé transcendents, eventually culminates in re-
producing exact fluctuation formulas for Ginibre complex random matrices.
Finally, in Section 4, we make a comparison of our exact approach with
the approximate treatment [22] of non-Hermitean disordered Hamiltonians
based on the ‘replica symmetry breaking’ ansatz; we also comment on differ-
ences between our approach to replicas and a framework [29, 30] exploiting
a replica limit of the infinite Toda Lattice equation.

2 Ginibre unitary ensemble of non-Hermitean ran-
dom matrices: Definitions and basic results

Preliminaries.–Statistical ensemble of generic N × N complex random
matrices H ∈ CN×N whose entries are independently distributed in accor-
dance with the Gaussian law [37]

PN (H) = π−N
2
exp

³
−tr HH†

´
(6)

has first been introduced in the pioneering work by Ginibre [32]. Throughout
the paper, such random Hamiltonians will be denoted as H ∈ GinUEN .

The joint probability distribution function PN (z1, · · · , zN ) of N eigen-
values of the matrix H is of particular interest. Having Schur-decomposed
the H as H = U †(Z + R)U where U is a unitary matrix which is unique
up to the phase of each column, R is a strictly upper-triangular complex
matrix, and Z is a diagonal matrix Z = diag (z1, · · · , zN ) consisting of N
complex eigenvalues {z`} = {x` + iy`} of the H, Ginibre managed to derive
the joint probability distribution function of {z`} in the form

PN (z1, · · · , zN ) = C(N)
NY

`1<`2=1

|z`1 − z`2 |2
NY
`=1

w2(z`, z̄`) (7)
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where the weight function w2(z, z̄) equals w2(z, z̄) = exp(−zz̄). Given the
integration measure d2Z` = dx`dy`, the inverse normalisation constant in
(7) is determined to be C−1(N) = πNΓ(N + 1).

Of primary interest is the p-point correlation function

Rp(z1, . . . , zp;N) =
N !

(N − p)!
Z NY

`=p+1

d2Z` PN (z1, · · · , zN ) (8)

describing a probability density to find p complex eigenvalues around each
of the points z1, · · · , zp while positions of the remaining levels stay unob-
served. Quite often, one is also interested in the thermodynamic limit of the
correlation function

ρp(z1, · · · , zp) = lim
N→∞

1

δ2pN
Rp

µ
z1
δN
, · · · , zp

δN
;N

¶
(9)

that magnifies spectrum resolution on the appropriate energy scale δN while
letting the matrix size N tend to infinity.

The multi-fold integral in (8) can explicitly be evaluated by adopting the
Gaudin-Mehta [16] method of orthogonal polynomials originally introduced
in the context of Hermitean random matrix theory. It is a straightforward
exercise to demonstrate that Rp(z1, · · · , zp;N) admits the determinant rep-
resentation

Rp(z1, · · · , zp;N) = det [KN (zk, z̄`)]k,`=1,··· ,p (10)

involving the scalar kernel

KN (z, z
0) = w(z, z̄)w(z0, z̄0)

N−1X
`=0

P`(z)P`(z
0)

expressed in terms of polynomials P`(z) orthonormal in the complex plane
z = x+ iy Z

d2Z w2(z, z̄)Pk(z)P`(z̄) = δk ` (11)

with respect to the measure w2(z, z̄) d2Z.
For instance, it follows from (10) that the density of states and the two-

point correlation function equal

R1(z;N) = KN (z, z̄) (12)
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and

R2(z1, z2;N) = KN (z1, z̄1)KN (z2, z̄2)− |KN (z1, z̄2)|2 , (13)

respectively.
For the Gaussian measure, the orthonormal polynomials P`(z) are just

monomials

P`(z) =
z`p

πΓ(`+ 1)
(14)

leading to the scalar kernel

KN (z, z
0) =

1

π
e−zz̄/2 e−z

0z̄ 0/2
N−1X
`=0

(zz0)`

Γ(`+ 1)
. (15)

Density of states.–Put into the integral form, the kernel (15) yields
the finite—N density of states

R1(z;N) =
e−zz̄

πΓ(N)

Z ∞

0
dλ e−λ(λ+ zz̄)N−1. (16)

In terms of the upper incomplete gamma function

Γ(a, x) =

Z ∞

x
dt ta−1e−t (17)

the level density equivalently reads

R1(z;N) =
Γ(N, zz̄)

πΓ(N)
. (18)

A careful analysis of the integral (16) shows that, in the large—N limit, N
complex eigenvalues are (almost) uniformly distributed within a circle of the
radius

√
N centered at z = 0,

R1(z;N À 1) ' π−1θ(
√
N − |z|), (19)

θ(x) being a Heaviside step function.
In the vicinity zc = (

√
N + u) eiϕ of the edge |z| = √N of the two-

dimensional eigenvalue support described by (19), the density of states
sharply crosses over from R1(z;N À 1) = π−1 at |z| < √N to R1(z;N À
1) = 0 at |z| > √N . The crossover is described by the local density of
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eigenvalues R
(tails)
1 (u) = R1(zc;N) which, in the large—N limit, turns out to

be independent of the matrix size N ,

R
(tails)
1 (u) =

1

π (2π)1/2

Z ∞

2u
dt e−t

2/2. (20)

Expressed in terms of the complementary error function

erfc(x) =
2√
π

Z ∞

x
dt e−t

2
(21)

the local density of states reads

R
(tails)
1 (u) =

1

2π
erfc

³
u
√
2
´
. (22)

At |u| À 1, the tail asymptotics can be read out of (22) and are given by

R
(tails)
1 (u) ' 1

π

Ã
θ(−u) + e−2u2

2(2π)1/2 u

!
. (23)

Two-point correlation function.–At finite N , this simplest fluctu-
ation characteristics is given by (13) and (15). In the large—N limit, when
both z1 and z2 in (13) are situated inside the circle |z| <

√
N , the ker-

nel (15) reduces to simple exponentials so that the two-point correlation
function becomes N—independent,

R2(z1, z2) = R2(z1, z2;N À 1) =
1

π2

³
1− e−|z1−z2|2

´
. (24)

Make notice that the two-point correlation functionR2(z1, z2;N) differs from
the density-density correlation function R̂(z1, z2;N) defined by

R̂(z1, z2;N) =

tr δ2(z1 −H) tr δ2(z2 −H)

®
H∈GinUEN . (25)

The latter contains an additional δ—function contribution [38]

R̂(z1, z2) = R̂(z1, z2;N) =
1

π
δ2(z1 − z2) +R2(z1, z2) (26)

coming from the self-correlation of eigenlevels that chanced to meet in the
complex plane.
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3 Fermionic replica field theory

In this section we are going to re-derive the above nonperturbative results by
mapping the Ginibre ensemble (6) of complex non-Hermitean random ma-
trices onto a zero-dimensional (0D) fermionic replica field theory. Since the
nonperturbative fluctuation formulae collected in Section 2 are well known
for almost four decades (we remind that Ginibre’s work [32] dates back to
1965), one may wonder why we should bother ourselves with such a minor
issue. The answer prompted by the discussion in Section 1 is twofold. First,
more than twenty years after their invention [3, 4], replica field theories
largely remain unexplored territory from the viewpoint of their controllable
treatment away from a perturbative sector. Second, learning intrinsic inte-
grable structure of fermionic replica field theories in the simplest 0D limit —
apart from encountering indisputable mathematical beauty of exact theory
— creates a basis for future work beyond the RMT: Given an intimate con-
nection [23] between integrability and the underlying physical symmetries,
one may hope that some crucial characteristics of 0D replica partition func-
tions are in fact not so peculiar to these simple models but remain true in a
more general setting.

3.1 Replica partition functions

Density of states.–To determine the average density of complex eigenval-
ues of the matrix Hamiltonian H ∈ GinUEN , we use a proper modification
[22] of (4) and (5). A new recipe [22] is

R1(z;N) = lim
n→0

1

πn

∂2

∂z∂z̄
Zn(z, z̄;N) (27)

where the replica partition function Zn(z, z̄;N) is determined by the matrix
integral

Zn∈R(z, z̄;N) =
D
det n(z −H) det n(z̄ −H†)

E
H∈GinUEN

. (28)

Representing each of the determinants in (28) as a field integral over an N—
component fermionic field and performing the averaging over H ∈ GinUEN ,
one maps Zn(z, z̄;N) onto a fermionic replica sigma model, Zn(z, z̄;N) 7→
Z̃n(z, z̄;N), of the form [22]

Z̃n∈Z+(z, z̄;N) =
¿
detN

µ
z −Q
Q† z̄

¶À
Q∈GinUn

. (29)
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Importantly, while Zn(z, z̄;N) in (28) is defined for arbitrary n ∈ R, the
replica parameter n in the representation (29) for the mapped replica parti-
tion function Z̃n(z, z̄;N) is restricted — by derivation — to positive integers
only, n ∈ Z+. To emphasise this difference between two types of partition
functions, we will write either ‘tilded’ Z̃n (n ∈ Z+) or ‘untilded’ Zn (n ∈ R).

The matrix integral (29) can be reduced to an n—fold integral [22] by
making use of a singular value decomposition of a complex matrix Q ∈
Cn×n. Expressing it as Q = UΛV where U ∈ U(n)/U(1)n, V ∈ U(n) and
Λ = diag(λ

1/2
1 , · · · ,λ1/2n ) with λ` ≥ 0, and calculating a Jacobian of the

transformation Q→ (Λ, U, V ), one derives [22]

Z̃n(z, z̄;N) =

Z ∞

0

nY
`=1

dλ` e
−λ` (λ` + zz̄)N

nY
`1<`2=1

|λ`1 − λ`2 |2. (30)

We reiterate that this representation makes sense for n ∈ Z+ only. This
is precisely the reason why the replica limit (27) with Zn replaced by Z̃n
cannot be implemented directly.

Density-density correlation function.–Similarly to the level den-
sity (27), the density-density correlation function (25) can be retrieved from
the replica limit

R̂(z1, z2;N) = lim
n→0

1

π2n2
∂2

∂z1∂z̄1

∂2

∂z2∂z̄2
Zn(z1, z̄1; z2, z̄2;N) (31)

where, for arbitrary n ∈ R, the replica partition function Zn(z1, z̄1; z2, z̄2;N)
is defined by

Zn∈R(z1, z̄1; z2, z̄2;N) =D
det n(z1 −H) det n(z̄1 −H†) det n(z2 −H) det n(z̄2 −H†)

E
H∈GinUEN

.

(32)

Upon a fermionic mapping [22] which restricts the replica parameter to
n ∈ Z+, this generating function can be rewritten as

Z̃n∈Z+(z1, z̄1; z2, z̄2;N) =
¿
detN

µ Z −Q
Q† Z̄

¶À
Q∈GinUE2n

(33)

with the diagonal matrix Z = diag(z1 1n, z2 1n). Note a tilde in (33).
For z1, z2 finite and of order unity, Z̃n∈Z+ can be reduced [22] to a ma-

trix integral over U ∈ U(2n) which eventually boils down to the n—fold

111



integral[39]

Z̃n(z1, z̄1; z2, z̄2;N) = e
−2n(N−zz̄)

Z +1

−1

nY
`=1

dλ` e
(ωω̄/2)λ`

nY
`1<`2=1

|λ`1 − λ`2 |2.

(34)

Here,

z =
z1 + z2
2

, ω = z1 − z2. (35)

As is the case (30), this representation makes sense for n ∈ Z+ so that the
replica limit (31) with Zn replaced by Z̃n cannot be implemented directly.

3.2 Replica partition functions as members of a positive Toda
Lattice Hierarchy

By derivation, the n—fold integral representations (30) and (34) of the replica
partition functions Z̃n(z, z̄;N) and Z̃n(z1, z̄1; z2, z̄2;N) stay valid for n ∈ Z+
only. Therefore, any attempt to retrieve spectral fluctuation properties of
the matrix Hamiltonian H out of the replica limits (27) and (31) with Zn
replaced by Z̃n will inevitably face the problem of analytic continuation [40]
of Z̃n’s away from n positive integers. For this procedure to be controlled,
an exact result for Z̃n is desired to start with.

For approximate treatment [9, 12] of the above replica partition functions
the reader is referred to Ref. [22]. In this subsection we wish to explore
another route which rests on exact and, therefore, truly nonperturbative
evaluation of replica partition functions. A connection between nonlinear
replica σ models and the theory of integrable hierarchies is at the heart
of our formalism [23]. A proof that the nonperturbative fermionic replica
partition functions form a positive, semi-infinite Toda Lattice Hierarchy is
the first important outcome of our approach.

Bulk density of states.–To show how the Toda Lattice Hierarchy
emerges in the context of (30), we represent the Vandermonde determinant
there as

nY
`1<`2=1

(λ`1 − λ`2) = det(λ
`−1
k )k,`=1,··· ,n, (36)

simultaneously shift all λ`’s therein by zz̄, and perform the n—fold integral
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(30) by means of the Andréief—de Bruijn integration formula [41, 42]Z nY
`=1

dµ(λ`) det[Ak(λ`)]k,`=1,··· ,n det[Bk(λ`)]k,`=1,··· ,n =

n! det

µZ
dµ(λ)Ak(λ)B`(λ)

¶
k,`=1,··· ,n

(37)

which holds for any benign integration measure dµ(λ) given convergence of
the integrals involved. Up to (irrelevant for our purposes) factorial prefactor,
the interim result is

Z̃n(z, z̄;N) = det

µZ ∞

0
dλ e−λ(λ+ zz̄)N+k+`

¶
k,`=0,··· ,n−1

. (38)

While exhibiting some beauty (in particular, e−zz̄Z̃1(z, z̄;N) coincides, up
to a normalisation prefactor, with the density of states R1(z;N + 1) in
GinUEN+1, see (16)), the representation (38) is not very informative or
helpful. What is more helpful is another though totally equivalent form of
(38),

Z̃n(z, z̄;N) = e
nzz̄(zz̄)n(n+N) τ̃n(zz̄;N), (39)

which involves the Hankel determinant

τ̃n(zz̄;N) = det
h
∂k+`(zz̄)τ̃1(zz̄;N)

i
k,`=0,··· ,n−1

(40)

with

τ̃0(zz̄;N) = 1, τ̃1(zz̄;N) =

Z ∞

1
dλλNe−zz̄λ =

Γ(N + 1, zz̄)

(zz̄)N+1
. (41)

Here, Γ(a, x) is the upper incomplete gamma function (17). The initial
condition for τ̃0(zz̄;N) reflects the fact that Z̃0(z, z̄;N) = Z0(z, z̄;N) = 1,
see (28).

The Hankel determinant (40) is a remarkable object. Whatever the
function τ̃1(zz̄;N) is, by virtue of the Darboux Theorem [43], the entire
sequence {τ̃k∈Z+} satisfies the equation

τ̃n τ̃
00
n − (τ̃ 0n)2 = τ̃n−1τ̃n+1, n ∈ Z+ (42)

where the prime 0 stands for ∂(zz̄). Equations (39) and (42) taken together
with the known initial conditions τ̃0 = 1 and τ̃1 given by (41) establish [23] a
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hierarchy between nonperturbative fermionic replica partition functions Z̃n
with different n ∈ Z+. The exact result (39), (41), and (42) is an alternative
to an approximate positive-integer—n treatment of the very same replica
partition function presented in Ref. [22].

Equation (42), known as positive, semi-infinite Toda Lattice equation
in the theory of integrable hierarchies [24], is the first indication of exact
solvability hidden in replica field theories. Importantly, emergence of the
Toda Lattice Hierarchy is eventually due to the β = 2 Dyson’s symmetry
of the fermionic replica field theory encoded into the squared Vandermonde
determinant in (30).

Density of states at the edge.–The above symmetry argument en-
sures that the replica partition function for the edge density of states in
the GinUEN will obey the same Toda Lattice equation albeit with differ-
ent initial conditions. Close to the edge |z| = √N (see discussion next to
(19)), one is interested in the large—N replica partition function Z̃n(z, z̄;N)
taken at z = (

√
N + u) eiϕ in the regime |u| ¿ √N . The latter, denoted as

Z̃
(tails)
n (u), is independent of the matrix size N and equals

Z̃(tails)n (u) =

Z ∞

0

nY
`=1

dt` e
−t2`/2−2ut`

nY
`1<`2=1

|t`1 − t`2 |2. (43)

Irrelevant numeric prefactors were omitted.
Much in line with previous calculations, the n—fold integral (43) can be

transformed into the Hankel determinant form

Z̃(tails)n (u) = det
h
∂k+`u Z̃

(tails)
1 (u)

i
k,`=0,··· ,n−1

(44)

with

Z̃
(tails)
0 (u) = 1, Z̃

(tails)
1 (u) = e2u

2

Z ∞

2u
dt e−t

2/2 =

r
π

2
e2u

2
erfc

³
u
√
2
´
.

(45)

As soon as Z̃
(tails)
0 (u) = 1 (normalisation), the Darboux Theorem [43] can

be applied to conclude that the entire sequence {Z̃(tails)
k∈Z+ } of replica partition

functions at the edge of the two-dimensional eigenvalue support belongs to
the positive, semi-infinite Toda Lattice Hierarchy

Z̃(tails)n Z̃(tails) 00n − (Z̃(tails) 0n )2 = Z̃
(tails)
n−1 Z̃

(tails)
n+1 , n ∈ Z+ (46)

the prime 0 stands for ∂u. Also, similarly to the observation made below
(38), we notice that, up to a prefactor, e−2u2Z̃(tails)1 (u) coincides with the
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edge density of states R
(tails)
1 (u) as given by (20). We will comment on this

later on.
Bulk eigenvalue correlations.–By the same token, the replica parti-

tion function (34) designed to calculate the density-density correlation func-
tion via the replica limit (31) belongs to a Toda Lattice Hierarchy, too.
Separating z and ω—dependent pieces in (34), one derives

Z̃n(z1, z̄1; z2, z̄2;N) = e−2n(N−zz̄)Z̃n(ωω̄) (47)

where Z̃n(ωω̄) determined by the n—fold integral in (34) can be cast into the
Hankel determinant form [13, 23]

Z̃n(ωω̄) = det

µ
∂k+`(ωω̄)

sinh(ωω̄/2)

ωω̄/2

¶
k,`=0,··· ,n−1

. (48)

The positive, semi-infinite Toda Lattice equation for {Z̃k∈Z+} readily follows
by virtue of the Darboux Theorem.

3.3 Replica partition functions and Painlevé transcendents

While important for revealing integrability of the field theory, the Toda
Lattice equation for fermionic replica partition functions Z̃n∈Z+ is not much
helpful in performing the replica limit, if taken alone. Indeed, a positive
Toda Lattice equation gives no close expression for Z̃n as a function of
n ∈ Z+ that would facilitate an analytic continuation to n ∈ R in gen-
eral, and to the region 0 ≤ n ¿ 1 in particular. As was recently shown
by Splittorff and Verbaarschot [29, 30], this difficulty can be circumvented
if one succeeds in gaining a complementary hierarchical information about
bosonic replica partition function. (The latter satisfies a negative [7] Toda
Lattice equation). Viable yet surprisingly efficient [30] for random matrix
models describing interactionless stochastic systems, this route is certainly
unavailable for replica description of physical systems in presence of inter-
action [44] which requires to use either bosonic or fermionic field integrals
in order to properly accommodate quantum statistics of interacting species.

Considering exact replica treatment of disordered interacting systems as
a legitimate goal, it would be conceptually important to not rely on such
a complementary information. Fortunately, for 0D interactionless systems
at hand, it is indeed possible. Miraculously, the same Toda lattice equation
governs the behaviour of so-called τ -functions arising in the Hamiltonian for-
mulation [25-28] of the six Painlevé transcendents (PI — PVI), which are yet
another fundamental object in the theory of nonlinear integrable systems.
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Luckily, the Painlevé equations being second order nonlinear differential
equations contain the hierarchy (or replica) index n as a parameter. As will
be demonstrated below, this feature of Painlevé equations makes them serve
as a proper starting point for constructing a consistent analytic continuation
of nonperturbative replica partition functions away from n integers. This
Painlevé reduction further confirms exact solvability of replica σ models and
assists [23] performing the replica limit.

Bulk density of states.–Certainly being an option, the aforemen-
tioned Toda to Painlevé reduction [45] is not the only way to arrive at the
sought Painlevé representation of the replica partition function Z̃n(z, z̄;N).
An alternative approach would rest on the observation that the n—fold in-
tegral (30) is essentially a Fredholm determinant [46] associated with a gap
formation probability

E(0,zz̄)n (0; a) =

Z ∞

zz̄

nY
`=1

dλ` e
−λ` λa`

nY
`1<`2=1

|λ`1 − λ`2 |2 (49)

within the interval (0, zz̄) in the spectrum of an auxiliary n × n Laguerre
unitary ensemble. Celebrated result [47] due to Tracy and Widom states
that

E(0,zz̄)n (0; a) = exp

µZ zz̄

0
dt

σV(t)

t

¶
(50)

where σV(t) = σn(t; a) is the fifth Painlevé transcendent satisfying the
Jimbo-Miwa-Okamoto form of the Painlevé V equation [26, 48]

(tσ00V)
2 − (aσ0V)2 − (σV − tσ0V)

h
σV − tσ0V + 4σ0V

³
σ0V + n+

a

2

´i
= 0 (51)

supplemented by the boundary condition [50, 51]

σV(t)|t→+∞ ∼ −nt+ an−
an2

t
+O(t−2). (52)

We, thus, derive an exact Painlevé V representation of the replica partition
function Z̃n(z, z̄;N) in the form

Z̃n(z, z̄;N) = e
nzz̄ exp

µZ zz̄

0
dt

σV(t)

t

¶
. (53)

where σV(t) = σn(t; a = N).
Note that (51) — (53) contain the replica index n ∈ Z+ as a parameter.

Taken together with the fact that the above Painlevé representation encodes
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all hierarchical inter-relations between the replica partition functions with
various replica indices, it is very tempting to conjecture that (53), as it
stands, holds beyond n ∈ Z+ as well. Indeed, for n > −1, this conclusion
has recently been proven [49] by appealing to the Okamoto τ -function theory
[26] of the fifth Painlevé transcendent. Therefore, the replica limit (27) with
Zn substituted by Z̃n can safely be implemented.

To proceed, we expand a solution to (51) around n = 0. Owing to the
normalisation Z̃0 = 1, the expansion starts with a term linear in n,

σV(t) = σn(t; a) =
∞X
p=1

npfp(t; a). (54)

Only the first term of the above series is of our interest since the replica
limit relates the bulk density of states R1(z;N) to the function f1(t;N) as

R1(z;N) = π−1[1 + f 01(zz̄;N)]. (55)

Here f1(t;N) satisfies the differential equation

(tf 001 )
2 − (f1 − tf 01)2 − 2Nf 01(f1 − tf 01)− (Nf 01)2 = 0 (56)

subject to the conservation constraint [51]Z
C
d 2z R1(z;N) =

Z ∞

0
dt [1 + f 01(t;N)] = N. (57)

Identifying a complete square in (56), we reduce the latter to the Kummer
differential equation

f1 + (N − t)f 01 ± tf 001 = 0. (58)

The constraint (57) makes us look for those solutions f1(t;N) whose first
derivative f 01 is bounded at t = +∞ and possibly has an integrable singular-
ity at t = +0. This class of functions sought welcomes the sign (−) in (58)
leading to a general solution

f1(t;N) = C1 (N − t) + C2 tN+1 1F1(N,N + 2;−t). (59)

The constraint (57) uniquely fixes unknown constants C1 and C2 be C1 = 0
and C2 = −1/Γ(N + 2). This yields [52]

f1(t;N) = − tN+1

Γ(N + 2)
1F1(N ;N + 2;−t) (60)
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where 1F1(a; b; t) is the confluent hypergeometric function of Kummer. Con-
sequently, the replica limit (27) of the fermionic partition function (53) re-
sults in the density of states (55) of the form

R1(z;N) =
Γ(N, zz̄)

πΓ(N)
(61)

which is equivalent to (16) and (18). The small—n expansion of the fermionic
replica partition function

ln Z̃n(z, z̄;N) =

n(zz̄)

·
1 +

(zz̄)N

(N + 1)Γ(N + 2)
2F2(N,N + 1;N + 2, N + 2;−zz̄)

¸
+O(n2)

(62)

is behind the result (61). It should be stressed that the finite—N result
(61) cannot be produced by approximate treatment [22] of replicas which
heavily relies on availability of a large parameter (N À 1) in the integral
representation (30).

Density of states at the edge.–With the replica partition function

Z̃
(tails)
n given by (43), the density of states at the edge |z| = √N of the
two-dimensional eigenvalue support is determined by the replica limit

R
(tails)
1 (u) = lim

n→0
1

πn

∂2

∂u2
Z̃(tails)n (u). (63)

The partition function Z̃
(tails)
n can again be viewed as a Fredholm determi-

nant associated with a gap formation probability

E(u,∞)n (0) =

Z u

−∞

nY
`=1

dλ` e
−λ2`

nY
`1<`2=1

|λ`1 − λ`2 |2 (64)

within the interval (u,∞) in the spectrum of an auxiliary n × n Gaussian
Unitary Ensemble. In terms of the fourth Painlevé transcendent [27] σIV, it
reads [46, 53]

E(u,∞)n (0) = E(0,∞)n (0) exp

µZ u

0
dtσIV(t)

¶
(65)

where σIV(t) = σn(t; a = 0) satisfies the Painlevé IV equation in the Jimbo-
Miwa-Okamoto form

(σ00IV)
2 − 4(tσ0IV − σIV)

2 + 4σ0IV(σ
0
IV − 2a)(σ0IV + 2n) = 0 (66)
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subject to the boundary condition [51]

σIV(t)|t→−∞ ∼ −2nt−
n(a+ n)

t
+O(t−3). (67)

In both (66) and (67) the parameter a has to be set to zero. The above
equations result in the Painlevé IV representation of the fermionic replica
partition function

Z̃(tails)n (u) = e2nu
2
exp

ÃZ −u√2

0
dtσIV(t)

!
(68)

which holds for n ∈ Z+.
To perform the replica limit (63), we follow the technology that led us

to the small—n expansion (62). To this end we have to assume [54] that the
Painlevé IV representation (68) stays valid in a vicinity of n = 0. Writing
down [55]

σIV(t) = σn(t; a) =
∞X
p=1

npgp(t; a), (69)

one derives from here, (63) and (68) that

R
(tails)
1 (u) =

4

π

·
1 +

1

2
g01(−u

√
2; 0)

¸
. (70)

Equation for g1 = g1(t; a = 0) follows from (66) and (69),

g001 ± 2(tg01 − g1) = 0 (71)

while the boundary conditions are [56]

g01(−∞) + 2 = 0 (convergence)
g01(+∞) + 3/2 = 0 (conservation)

(72)

The sign (−) in (71) leads to a solution with unbounded first derivative
g01(t) at both infinities and is therefore incompatible with (72). Equation
(71) with the sign (+) yields a general solution

g1(t) = C1 t+ C2

µ
t erf t+

1√
π
e−t

2

¶
. (73)
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Boundary conditions (72) fix the constants [57] be C1 = −7/4 and C2 = 1/4.
By virtue of (70) this results in the density of states

R
(tails)
1 (u) =

1

2π
erfc

³
u
√
2
´
. (74)

This is identically equivalent to (23). The small—n expansion of the fermionic
replica partition function

ln Z̃(tails)n (u) =
n

4

·
u2 − 1√

2π
ue−2u

2 −
µ
u2 +

1

4

¶
erf
³
u
√
2
´¸
+O(n2) (75)

is behind the result (74). Being exact, the formula (74) describes the tails of
level density both inside (u < 0) and outside (u > 0) of the circle [32] |z| =√
N . The approximate treatment [22] of replicas has failed to reproduce the

density of states outside the circle, |z| > √N .
Density-density correlation function. To determine this spectral

characteristics, we put the replica limit (31) into the form

R̂(z1, z2) = lim
n→0

1

π2n2

µ
1

4
∂2z − ∂2ω

¶µ
1

4
∂2z̄ − ∂2ω̄

¶
Υ̃n(z, z̄;ω, ω̄) (76)

involving the variables z and ω as defined by (35). The notation Υ̃n(z, z̄;ω, ω̄)
stands for the replica partition function [39]

Υ̃n(z, z̄;ω, ω̄) = Z̃n

³
z +

ω

2
, z̄ +

ω̄

2
; z − ω

2
, z̄ − ω̄

2

´
. (77)

At z ± ω/2 of order unity, the n—fold integral representation (34) makes it
possible to express Υ̃n in terms of a gap formation probability

E(ωω̄,∞)n (0; a) =

Z ωω̄

0

nY
`=1

dλ` e
−λ` λa`

nY
`1<`2=1

|λ`1 − λ`2 |2 (78)

within the interval (ωω̄,∞) in the spectrum of an auxiliary n× n Laguerre
unitary ensemble (compare to (49)). The result due to Tracy and Widom
[47] states that

E(ωω̄,∞)n (0, 0) = exp

µ
−
Z ∞

ωω̄
dt

σV(t)

t

¶
(79)

where the fifth Painlevé transcendent σV(t) = σn(t; a = 0) satisfies the
equation (51) with a = 0 and meets the boundary condition [58]

σV(t)|t→∞ ∼
t2n−1

Γ2(n)
e−t

¡
1 +O(t−1)¢ . (80)
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The above equations yield, for n ∈ Z+, the exact representation

Υ̃n(z, z̄;ω, ω̄) =
exp [n(2zz̄ + ωω̄/2)]

(ωω̄)n2
exp

µ
−
Z ∞

ωω̄
dt

σV(t)

t

¶
. (81)

To implement the replica limit, we have to analytically continue (81)
into a vicinity of n = 0. Although at the moment we do not have a proof
that (81) as it stands also holds for n away from positive integers, armed
with the previous experience we are going to conjecture that this is indeed
the case so that

R̂(z1, z2) =
1

2π2
+
1

π2
lim
n→0

1

n2
(∂ω∂ω̄)

2 exp(nωω̄/2)

(ωω̄)n2
exp

µ
−
Z ∞

ωω̄
dt

σV(t)

t

¶
.

(82)

Equation (82) suggests that the two functions, h1(t) and h2(t), of the small—
n expansion

σV(t) =
∞X
p=1

np hp(t) (83)

contribute the density-density correlation function in the replica limit. As
we tend to avoid explicit reference to the boundary conditions for Painlevé
transcendents, the easiest way to determine h1 is to notice that, at |z| ¿√
N , the bulk density of states equals

R1(z;N) = lim
n→0

1

πn

∂2

∂z∂z̄
Z̃n(z, z̄; 0, 0;N). (84)

This is so because, at n→ 0, the partition functions (28) and (32) taken at
z1 = z and z2 = 0 become indistinguishable if considered as functions of the
energy variable z. Given (77) and (81), one derives

Z̃n(z, z̄; 0, 0;N) =
exp(nzz̄)

(zz̄)n2
exp

µ
−
Z ∞

zz̄
dt

σV(t)

t

¶
. (85)

Only linear in n term of the expansion (83) contributes the replica limit (84)
yielding

R1(z) =
1 + h01(zz̄)

π
. (86)

According to the replica result (61), this must be equal to 1/π whence we
conclude that the function h1(t) is a constant. Further, the equation

(th001)
2 − (h1 − th01)2 = 0 (87)
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following from (51) and (83) sets

h1(t) = 0. (88)

Therefore, the first nontrivial term in the expansion (83) actually starts with
n2h2(t) where h2(t) satisfies the equation

th002 ± (th02 − h2) = 0. (89)

The sign (−) is the one that meets existence arguments applied to (79). As
a result, we come down to

h2(t) = C1t+ C2E2(t) (90)

where E2(t) is the exponential integral

En(z) =

Z ∞

1
dt
e−zt

tn
, Re z > 0. (91)

Again, by existence arguments, C1 must be set to zero to ensure convergence
of the integral in the exponent of (79). To fix the constant C2, we make use
of the observation that Υ̃n has to be finite at ω = 0. This brings C2 = 1 so
that [59]

h2(t) = E2(t). (92)

Collecting (81), (83), (88) and (92), we end up with the following nonper-
turbative small—n expansion [23] of the logarithm of the replica partition
function:

ln Υ̃n(z, z̄;ω, ω̄) = n
³
2zz̄ +

ωω̄

2

´
−

n2
£
ln (ωω̄) +E1(ωω̄)−E2(ωω̄)

¤
+O(n3). (93)

The replica limit (76) applied to (93) culminates in the exact result for the
density-density correlation function

R̂(z1, z2) =
1

π
δ2(z1 − z2) + 1

π2

³
1− e−|z1−z2|2

´
. (94)

Notice a presence of the δ—functional contribution in (94) describing the
self-correlation of complex eigenlevels. The latter is inaccessible by the ap-
proximate treatment [22] of replicas.
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3.4 Comment on a puzzle [22]

In the paper [22], Nishigaki and Kamenev have noticed that there exists
a ‘striking resemblance’ between the finite—N densities of states and the
replica partition functions for non-Hermitean random matrices belonging to
all three universality classes β = 1, 2 and 4. In the context of the present
study, the observation of the authors of Ref. [22] can be translated into the
identity (see two remarks below (38) and (46), respectively)

R1(z;N) ∝ e−zz̄ Z̃1(z, z̄;N − 1) (95)

that links the density of states R1(z;N) in GinUEN to the replica partition
function Z̃1(z, z̄;N − 1) for the same ensemble albeit of a smaller dimension
GinUEN−1.

The identity (95) is not a miracle and can well be understood as a con-
sequence of the relation (12). Indeed, viewing the scalar kernel KN (z1, z2)
in (12) as a matrix integral [60, 61]

KN (z1, z2) ∝ e−z1z̄1/2e−z2z̄2/2
D
det (z1 −H) det (z2 −H†)

E
H∈GinUEN−1

one readily identifies

KN (z, z̄) ∝ e−zz̄ Z̃1(z, z̄;N − 1) (96)

whence (95) follows [62]. Interestingly, so explained identity (95) taken
together with (27) leads, in the context of fermionic replica field theory, to
a much less trivial statement

∂2

∂z∂z̄
Z̃n(z, z̄;N) = πn e−zz̄Z̃1(z, z̄;N − 1) +O(n2). (97)

Similar small—n expansions should exist for two other (β = 1 and 4) univer-
sality classes in non-Hermitean RMT.

4 Discussion

In the present paper we have offered a detailed account of a nonperturba-
tive approach [23] to zero-dimensional fermionic replica field theories which
is based on exact representation of replica partition functions in terms of
Painlevé transcendents. Focusing on Ginibre ensemble [32] of complex non-
Hermitean random matrices, we have revealed an intrinsic integrability of as-
sociated replica field theories. It materialises in two ways: First, at n ∈ Z+,

123



the replica partition functions were proven to belong to a positive, semi-
infinite Toda Lattice Hierarchy. Second, the very same replica partition
functions were shown to be expressible in terms of solutions to Painlevé
equations which (i) contain the replica index as a single parameter and which
(ii) implicitly encode all hierarchical inter-relations between the fermionic
replica partition functions with various replica indices.

The above two observations [(i) and (ii)] led us to conjecture that Painlevé
representations of fermionic replica partition functions stay valid beyond
n ∈ Z+ and, in particular, in a vicinity of n = 0. Indeed, for a particular
case of the replica partition function Z̃n(z, z̄;N) designed to determine the
bulk density of complex eigenvalues, this conjecture was rigorously proven
[49] by appealing to the Okamoto τ -function theory of the Painlevé V. (Sim-
ilar, in spirit, proof was previously given [23] in the context of the one-point
Green function in the finite—N Gaussian Unitary Ensemble where a Painlevé
IV equation arises). Once justified, it is no surprise that taking the replica
limit of the Painlevé-represented fermionic partition function Z̃n(z, z̄;N)
has culminated in reproducing exact nonperturbative results for the bulk
density of states. In other cases, which include the tails of level density
and the density-density correlation function in the spectrum bulk, although
implemented without a formal justification, the replica limit of replica parti-
tion functions expressed in terms of Painlevé transcendents has also brought
exact nonperturbative results. This fact as well as other encouraging ap-
plications [23] of the present method make us look further into the rational
reasons behind its success. Possibly, recent developments [63] in the field of
extended Toda Hierarchy may give us the right lead.

Finally, a remark is in order aimed to pinpoint the difference between
the approach [23] detailed in this paper and a complementary approach
recently elaborated in Refs. [29, 30]. Although both approaches exploit
the very same replica representations of quantum correlation functions as a
starting point, the two frameworks are conceptually different. The present
approach [23, 7] based on exact Painlevé evaluation of fermionic replica par-
tition functions followed by their continuation into a vicinity of n = 0 makes
no reference whatsoever to bosonic partition functions. On the contrary, the
approach [29, 30] exploiting the replica limit of the Toda Lattice equation
for replica partition functions rests explicitly, and unavoidably, on the ob-
servation that suitably normalised fermionic and bosonic replica partition
functions are the members of a single Toda Lattice Hierarchy albeit belong-
ing to its positive (fermionic) and negative (bosonic) branches, respectively.
Implemented on the level of such an infinite — supersymmetric in essence —
Toda Lattice equation, the replica limit reveals a remarkable factorisation
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of quantum correlation functions for an interactionless matrix Hamiltonian
into a product of both fermionic and bosonic partition functions. It is this
factorisation which — in order to be materialised on the operational level
— explicitly infuses [31, 64] a missing bosonic (or fermionic) information to
what early appeared to be a pure fermionic (or bosonic) formulation of the
field theory. While facilitating calculation of correlation functions in the
interactionless case, this feature makes the approach [29, 30] be potentially
inapplicable for a nonperturbative replica treatment [44] of 0D Hamiltonians
with interactions [65-67] whose presence requires using of either bosonic or
fermionic field integrals in order to accommodate a proper quantum statis-
tics of interacting species.
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[18] M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Be-
yond (World Scientific, Singapore, 1987).

[19] D.M. Gangardt and A. Kamenev, Nucl. Phys. B 610, 578 (2001).

[20] S. M. Nishigaki, D. M. Gangardt, and A. Kamenev, e-print cond-
mat/0207301 (2002).

[21] D. Dalmazi and J.J.M. Verbaarschot, Nucl. Phys. B 592, 419 (2001).

[22] S.M. Nishigaki and A. Kamenev, J. Phys. A: Math. and Gen. 35, 4571
(2002).

[23] E. Kanzieper, Phys. Rev. Lett. 89, 250201 (2002).

[24] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lat-
tices (AMS, Providence, RI, 2000).

[25] K. Okamoto, Ann. Mat. Pura Appl. (4), 146, 337 (1987).

[26] K. Okamoto, Japan. J. Math. 13, 47 (1987).

[27] K. Okamoto, Math. Ann. 275, 221 (1986).

126



[28] K. Okamoto, Funkcial. Ekvac. 30, 305 (1987).

[29] K. Splittorff and J.J.M. Verbaarschot, Phys. Rev. Lett. 90, 041601
(2003).

[30] K. Splittorff and J.J.M. Verbaarschot, e-print hep-th/0310271 (2003).

[31] In particular, both compact (fermionic) and non-compact (bosonic) in-
tegrals for partition functions appear explicitly in the formalism [30].

[32] J. Ginibre, J. Math. Phys. 6, 440 (1965).

[33] M. Mineev-Weinstein, P.B. Wiegmann, and A. Zabrodin, Phys. Rev.
Lett. 84, 5106 (2000).

[34] O. Agam, E. Bettelheim, P. Wiegmann, and A. Zabrodin, Phys. Rev.
Lett. 88, 236801 (2002).

[35] A. Zabrodin, e-print cond-mat/0210331 (2002).

[36] Y.V. Fyodorov and H.-J. Sommers, J. Phys. A: Math. and Gen. 36,
3303 (2003).

[37] The normalisation constant is fixed by the integration measureQN
k, `=1 dReHk` dImHk`.

[38] The δ—function in the complex plane is understood as δ2(z) =
δ(Re z) δ(Im z).

[39] In the regime in question, the parameter N enters Z̃n [see (34)] as a
prefactor vanishing in the replica limit. For this reason, we will some-
times drop N from the arguments of Z̃n. This is also the reason why N
does not appear as a parameter in the l.h.s. of (76).

[40] Unless we know how to interprete [6] the integration measure at n /∈ Z+.
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