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Abstract

Double quantum crossbars (QCB) is a superlattice formed by two
crossed interacting arrays of metallic nanotubes or quantum wires. The
system possesses the Luttinger liquid (LL) fixed point, and a rich Bose-
type excitation spectrum (plasmon modes). QCB plasmons may be in-
volved in resonance diffraction of incident electromagnetic waves and
in optical absorption in the infrared (IR) part of the spectrum. The
absorption of external electric field in QCB strongly depends on the
direction of the wave vector of an incident wave. As a result two types
of 1D → 2D dimensional crossover with varying angle of an incident
wave or its frequency can be observed.

PACS: 78.67.-n; 77.22.Gm; 73.90.+f

1 Introduction

QCB is a double 2D grid formed by two superimposed crossing arrays of
parallel conducting quantum wires [1 - 4], molecular chains [5] or single
wall carbon nanotubes (SWCNT) [4, 6 - 8]. It represents a novel artificial
nano-object which is one of the most attractive architectures for designing
molecular-electronic circuits for computational application [5, 6, 9]. Similar
structures with the same crossbar geometry also arise naturally as, e.g.,
crossed striped phases of doped transition metal oxides [10]. The possibility
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of excitation of one of the QCB constituents (nanotube, a single wire) by
external electric field and existence of bistable conformations of other of
them (molecular chain [11]) together with mechanical flexibility makes QCB
an excellent candidate for an element of random access memory for molecular
computing.

From a topological point of view, QCB is in a sense an object with
intermediate dimensionality. Its spectral properties can not be treated in
terms of purely 1D or 2D electron liquid theory. A constituent element of
QCB (quantum wire or nanotube) possesses the Luttinger liquid (LL) like
spectrum [12, 13]. A single array of parallel quantum wires is still a LL-
like system qualified as a sliding phase [7] provided the pure electrostatic
interaction between adjacent wires is taken into account. If an inter-wire
tunneling is possible, the electronic spectrum of an array is that of 2D Fermi
liquid (FL) [14, 15].

Similar low-energy, long-wave properties are characteristic of QCB as
well. Its phase diagram inherits some properties of a sliding phases in case
when the wires and arrays are coupled only by capacitive interaction [7, 16].
When inter-array electron tunneling is possible, say, in crosses, dimensional
crossover from LL to 2D FL occurs [7, 17, 18]. If tunneling is suppressed and
the two arrays are coupled only by electrostatic interaction in the crosses,
the system possesses the LL zero energy fixed point, and a rich Bose-type
excitation spectrum (plasmon modes) arises at finite energies in 2D Bril-
louin zone (BZ) [16, 19]. These QCB plasmons can be treated as a set of
dipoles distributed within QCB constituents. In a single wire the density
of the dipole momenta is proportional to the LL boson field θ(x) (x is the
coordinate along the wire).

Two sets of coupled 1D dipoles form unique system which possesses
the properties of 1D or 2D liquid depending on the type of experimental
probe. Some possibilities of observing 1D → 2D crossover in transport
measurements (which give information about the nearest vicinity of the LL
fixed point at (q,ω, T ) → 0) were discussed in Ref. [7]. Later on, other
crossover effects such as appearance of non-zero transverse space correla-
tors and periodic energy transfer between arrays (”Rabi oscillations”) were
studied [20, 19, 21]. Observation of these effects probes the QCB spectral
properties well beyond the sliding phase region.

However, the direct manifestation of crossover is the response to an ex-
ternal ac electromagnetic field. To estimate this response, one should note
that the two main parameters characterizing the plasmon spectrum in QCB
are the Fermi velocity v of electrons in a wire and the QCB period a (we
assume both periods to be equal). These parameters define both the typ-
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ical QCB plasmon wave numbers q = |q| ∼ Q = 2π/a and the typical
plasmon frequencies ω ∼ ωQ = vQ. Choosing according to Refs. [13, 6]
v ≈ 8 · 107 cm/sec and a ≈ 20 nm, one finds that the characteristic plasmon
frequencies lie in the far IR region ω ∼ 1014 sec−1, while the characteristic
wave vectors are estimated as q ∼ 106cm−1.

In this paper we study the possibilities of direct observation of dimen-
sional crossover at finite frequencies and wave vectors (i.e. outside the LL
fixed point) by the methods of IR spectroscopy. We show that these meth-
ods provide an effective tool for investigating the plasmon spectra in wide
enough (q,ω) region. They allow scanning of the 2D Brillouin zone in vari-
ous directions and thereby elucidate dimensional crossover in high symmetry
points of the BZ.

Let us consider a double square QCB interacting with an external in-
frared radiation (generalization to more complicated geometries is straight-
forward). The plasmon velocity v is much smaller than the light velocity c
and the light wave vector k is three orders of magnitude smaller than the
characteristic plasmon wave vector Q corresponding to the same frequency.
Therefore, an infrared radiation incident directly on an isolated array, can
excite plasmon only with ω = 0, or in other words it cannot excite plas-
mons at all. However in QCB geometry, each array serves as a diffraction
lattice for its partner, giving rise to Umklapp processes of wave vectors nQ,
n integer. As a result, excitation of plasmons in the BZ center q = 0 with
frequencies ω = nvQ occurs.

To excite QCB plasmons with q 6= 0 one may use an additional diffraction
lattice (DL) with period A > a coplanar with the QCB. Here the diffraction
field contains space harmonics with wave vectors 2πM/A, M integer, that
enables one to scan plasmon spectrum within the BZ. Dimensional crossover
manifests itself in the appearance of additional absorption lines when the
wave vector of the diffraction field is oriented along specific directions. In
the general case one observes single absorption lines forming two sets of
equidistant series. On the other hand, an equidistant series of split doublets
can be observed in the main resonance direction (QCB diagonal). In the case
of higher resonance directions, absorption lines form an alternating series of
singlets and split doublets demonstrating new type of dimensional crossover
related to the frequency change with direction fixed.

The structure of the paper is as follows. In Section 2, we briefly describe
double square QCB and its spectral properties. Interaction of QCB with
external electric field is studied in Section 3. In its first part we consider
the case when the incident infrared radiation falls directly on the QCB
(Subsection 3.1). The second part 3.2 is devoted to possible scanning of QCB
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spectrum with the help of an external DL. In the Conclusion we summarize
the results obtained.

2 Double square QCB

A square QCB is a 2D grid, formed by two periodically crossed perpendicular
arrays of 1D quantum wires or carbon nanotubes. Arrays are labelled by
indices j = 1(2) and the wires within the first (second) array are labelled by
an integer index n2 (n1). In experimentally realizable setups, QCB is a cross-
structure of suspended single-wall carbon nanotubes lying in two parallel
planes separated by an inter-plane distance d (see Fig. 1). Nevertheless,
some generic properties of QCB may be described under the assumption
that QCB is a genuine 2D system. We choose coordinate system so that
1) the axes xj and corresponding basic unit vectors ej are oriented along
the j-th array; 2) the x3 axis is perpendicular to the QCB plane; 3) the x3
coordinate is zero for the second array, and −d for the first one. The basic
vectors of the reciprocal superlattice for a square QCB are Qe1,2, Q = 2π/a
so that an arbitrary reciprocal superlattice vectorm is a summ =m1+m2,
where mj = mjQej , (mj integer). The first BZ is a square |q1,2| ≤ Q/2 (see
Fig. 2).

Figure 1: QCB. ej - basic vectors of the coordinate system. Vector e1 (e2)
is oriented along the first (second) array. The inter-array distance is d.

A single wire is characterized by its radius r0, length L, and LL inter-
action parameter g. The minimal nanotube radius is r0 ≈ 0.35 nm [22],
maximal nanotube length is L ≈ 1 mm, and the LL parameter is estimated
as g ≈ 0.3 [13]. In typical experimental setup [6] the characteristic lengths
mentioned above have the following values

d ≈ 2 nm, L ≈ 0.1 mm,
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so that the inequalities

r0 ¿ d¿ a¿ L

are satisfied.

Figure 2: The first quarter of the BZ.

The QCB interaction HE with an external electric field E = (E1, E2, E3)
is nothing but an energy of a set of QCB dipoles in this field

HE = −e
√
2

(X
n2

Z
dx1E1(x1, n2a,−d)θ1(x1, n2a,−d)+

X
n1

Z
dx2E2(n1a, x2, 0)θ2(n1a, x2, 0),

)
(1)

where θj is one of the two conventional canonically conjugate boson fields
πj , θj [19].

Before turning to investigation of QCB interaction with an external field,
we briefly describe the spectral properties of the QCB itself [19]. We start
with an isolated quantum wire of the j-th array. Its excitations are 1D LL
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plasmons with wave numbers qj +mjQ and frequencies v|qj +mjQ|. These
plasmons can be treated in terms of “empty wire” excitations described by
quasimomenta qj , band number sj = 1 + [2ωsj (qj)/vQ] (square brackets
denote integer part of a number), and dispersion law ωsj (qj) = v|qj +mjQ|.
The direct products of such eigenstates of two arrays form the eigenstates
of a 2D “empty lattice”. They are characterized by quasimomenta q +m
and band number s = 1 + [2(ωs1(q1) + ωs2(q2))/vQ].

Inter-array interaction turns “empty lattice” into QCB. In the actual
region of QCB parameters, this interaction is very small. Hence it grossly
conserves the unperturbed 1D systematics of levels and states, at least in
the low energy region corresponding to the first few frequency bands. This
means that perturbed eigenstates can be described in terms of the same
quantum numbers (array number, band number and quasimomentum) as
the plasmons of an “empty lattice”. Such a description fails in two specific
regions of the reciprocal space k = k1e1 + k2e2. The first one is the vicin-
ity of the high symmetry lines kj = nQ/2 with n integer (the lines with
n = ±1 include the BZ boundaries). Around these lines, the inter-band
mixing is significant and two modes from adjacent bands are degenerate.
The second region is the vicinity of the resonant lines k1 ± k2 = nQ where
the eigenfrequencies of the unperturbed plasmons

ωj(k) = v|kj |, j = 1, 2,

from the same band propagating along two arrays coincide ω1(k) = ω2(k+m).
The inter-array mixing is significant around the resonant lines where two
modes corresponding to different arrays are degenerate. The inter-array
interaction lifts these degeneracies and splits degenerate frequencies.

Thus, the inter-array interaction introduces real two dimensionality into
the problem. Fig. 3 (see also Fig. 5 below) illustrates characteristic 2D
features of the QCB spectrum. One can see well pronounced inter-array
splitting around the BZ diagonal ΓW and inter-band splitting in the vicinity
of the BZ corner W. The simplest way to probe 2D nature of QCB is to
observe this splitting in the corresponding spectral region. Possible ways of
such an observation are discussed in the next section.

3 Infrared absorption in QCB

3.1 Absorption in the BZ center

In the case of a dielectric substrate transparent in the infrared region, one
can treat QCB as an isolated grid (without substrate) interacting directly
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Figure 3: The energy spectrum of QCB (solid lines) and noninteracting
arrays (dashed lines) along the lines ΓA, X1W, and ΓW in Fig. 2.

with the incident radiation. Consider the simplest geometry (see Fig. 4
for details) where an external wave falls normally onto QCB plane, and its
electrical field

E = E0e1 cos (kr− ωt)

is parallel to the lower (first) array. In this geometry the field E is longitu-
dinal for array 1 and transverse for array 2 (see Fig. 4).

The eigenfrequencies of the transverse modes in array 2 substantially
exceed the IR frequency of the incident wave and even the standard LL ul-
traviolet cutoff frequency. Thus, the incident wave can be treated as a static
polarization field for this array, and the factor cosωt can be omitted. Then,
the polarization waves in array 2 form a longitudinal diffraction field for
array 1 with quasi wave vectors nQ (n integer). Further, the characteristic
order of magnitude Q of a QCB plasmon wave vector is much larger than
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Figure 4: The incident field orientation with respect to QCB. The axes x1
and x2 are directed along the corresponding arrays, and d is the inter-array
vertical distance (along the x3 axis).

the wave vector k of the incident light, and we put the latter equal to zero
from the very beginning. Then, the light wavelength is much larger than a
nanotube diameter and the geometric shadow effect can be neglected. As a
result the total field which affects array 1 consists of an external field and a
diffraction field produced by a static charge induced in array 2.

To calculate a diffraction field consider first the field E0 produced by the
quantum wire of array 2 which is located at x1 = x3 = 0 and labelled by
n1 = 0. The large distance between the wire under consideration and its
neighbor partners from the same array allows one to neglect the influence of
the charges induced on them. The static potential on the surface of the wire
includes external potential of an incident field and the potential Φ0 of the
charge induced on the wire. On the other hand this static potential should
be equal to a constant which we choose to be zero. In cylindrical coordinates
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r,ϑ, x2, x1 = r cosϑ, x3 = r sinϑ, this condition reads

Φ0(R0,ϑ, x2) = E0r0 cosϑ. (2)

Outside the wire, the induced potential Φ0 satisfies Laplace equation ∆Φ0 =
0. Solving this equation with boundary condition (2) we obtain the static
part of the induced potential

Φ0(r,ϑ, x2) =
E0r

2
0

r
cosϑ

and the corresponding static part of the induced field along the x1 direction

E01(x1, x3) = −E0
r20
¡
x23 − x21

¢¡
x23 + x

2
1

¢2 .
The first component of the diffraction field is the sum of the fields induced
by all wires of the upper array,

E1(x1; t) = cosωt
X
n1

E01(x1 − n1a,−d)

= −E0 cosωt
X
n1

r20
¡
d2 − (x1 − n1a)2

¢
(d2 + (x1 − n1a)2)2

. (3)

This field is a periodic function of x1 with period a. Therefore, its Fourier
expansion contains only wave vectors k1n = nQ (n is the order of diffraction).
This means that only frequencies ωn = nvQ can be excited. In this case it is
more convenient to expand the field over Bloch eigenfunctions of an “empty”
wire [19]. These functions are labelled by quasimomentum q1, |q1| ≤ Q/2,
and the band number s. The expansion includes only q1 = 0 components
and has the form

E1(x1; t) = cosωt
X
s

E[s/2]us(x1),

where

us(x) = exp
¡
iQx[s/2](−1)s−1¢

is the q1 = 0+ Bloch amplitude usq1(x) within the s-th band, [. . . ] is the
entire part symbol, and

En = −E0πr
2
0

ad
nQde−nQd. (4)
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The excited eigenfrequency ωn = ω[s/2] belongs simultaneously to the top of
the lower even band with number s = 2n and to the bottom of the upper
odd band with number s = 2n+1 (this is the result of E(x) parity). Incident
field corresponds to n = 0, and we do not take it into account.

Turning to the q, s representation with the help of the expansion

θ1(x1, n2a) =

√
a

L

X
sq

θ1sqe
i(q1x1+q2n2a) exp

¡
iQx1[s/2](−1)s−1signq1

¢
, (5)

and similarly for θ2 and π1,2, one easily sees that only the q = 0 components
are involved in interaction with the incident radiation. The corresponding
Hamiltonian has the form ( zero quasimomentum index is omitted):

HE = − eL√
2a
cosωt

X
s

E[s/2]

³
θ†1s + θ1s

´
,

Consider the initial frequency ω close to ωn. In a resonant approximation,
only four equations of motion for the “coordinate” operators θs with s =
2n, 2n+ 1 are relevant

θ̈1,2n + ω2nθ1,2n + φω2n (θ2,2n − θ2,2n+1) = Lfn cosωt,

θ̈1,2n+1 + ω2nθ1,2n+1 − φω2n (θ2,2n − θ2,2n+1) = Lfn cosωt,

θ̈2,2n + ω2nθ2,2n + φω2n (θ1,2n − θ1,2n+1) = 0,

θ̈2,2n+1 + ω2nθ2,2n+1 − φω2n (θ1,2n − θ1,2n+1) = 0, (6)

where

fn =

√
2vge

~
√
a
En

and the main small parameter of the problem

φ = 2
ge2

~v
r20
ad
≈ 0.007

is the dimensionless inter-array interaction. The homogeneous part of the
system (6) defines four eigenfrequencies,

ωgg = ωug = ωn,

ωuu ≈ ωn(1− φ),

ωgu ≈ ωn(1 + φ).

The corresponding eigenvectors are symmetrized combinations of the four
operators which enter Eq. (6). They have a fixed parity with respect to
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permutation of arrays (the first index) and neighboring bands (the second
index). Only the following two modes (even with respect to band index)

θgg =
1

2
(θ1,2n + θ1,2n+1 + θ2,2n + θ2,2n+1) ,

θug =
1

2
(θ1,2n + θ1,2n+1 − θ2,2n − θ2,2n+1)

interact with an external field. Therefore only the unperturbed frequency
ωn = ωgg = ωug will be absorbed. The two equations of motion for the
operators θgg,ug have the same form

θ̈α + 2γθ̇α + ω2nθα = Lfn cosωt,

where α = gg, ug and γ is an attenuation coefficient introduced phenomeno-
logically. Employing standard procedure in the vicinity of the resonance
|ω − ωn| ¿ ωn immediately yields the relative absorption of Lorentz type

∆In
I0

= 2g
e2

~c

µ
πr20
ad

¶2
γvQ

(ω − ωn)
2 + γ2

h
nQde−nQd

i2
, (7)

where

I0 =
cL2

4π
E20

is the energy of light that falls on the QCB per unit time.
Due to the exponential term in the r.h.s of Eq. (4), En decreases quickly

with n and only the first few terms contribute to absorption. The charac-
teristic dimensionless scale of the induced field r20/(ad) for typical values of
QCB parameters equals 0.004. In Fig. 5 we plot the lowest part of absorp-
tion spectrum. The figure shows that one can probe at least the first five
spectral lines corresponding to ωn with n = 1, 2, . . . , 5.

The width of the absorption line (7) is governed by an attenuation coef-
ficient γ. We expect its value to be small. Indeed, the attenuation is caused
mainly by decay of plasmon into phonons. The one phonon decay of the
plasmon with wave number k and frequency ω = v|k| into a single phonon
with the same ω and k occurs in a single point in 1D and does not yield
finite attenuation at all. Multi-phonon decay is weak because of the small
anharmonic coupling within the wire. As a result, the form of the absorption
lines should be determined mainly by the instrumental linewidth.
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Figure 5: The lowest ten bands of the QCB spectrum along the BZ diagonal
ΓW and the corresponding single lines of direct IR absorption.

3.2 Scanning of the spectrum

Within a geometry considered in the previous subsection, one can probe
plasmon spectrum only at the BZ center. To study plasmons with nonzero
wave vectors one should add to the system an external diffraction lattice
namely a periodic array of metallic stripes parallel to the Y axis (see Fig. 6).
The DL plane Z = 0 is parallel to the QCB planes Z = −D for the upper
second array and Z = −(D + d) for the lower first array (the Z axis is
parallel to the x3 axis). The distance D between DL and second array is of
the same order as the inter-array distance d = 2 nm. The angle between DL
wires and the second array is ϕ (0 < ϕ < π/2). To get a wave number K
of a diffraction field much smaller than Q one needs a DL with a period A
much larger than the QCB period a. In the following numerical estimations
we choose A ≈ 100 nm.

Consider an incident field with electric vector E = E0eX cos(kr − ωt)
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Figure 6: QCB and DL. The X,Y axes are oriented along the DL stripes
and the wave vector K of the diffraction field respectively. The DL (QCB)
period is A (a).

oriented along the X axis (perpendicular to the DL wires). The radius R0 of
a DL wire is assumed to be not much larger than the nanotube radius r0. In
this case light scattering on the DL is similar to that considered in Subsection
3.1. Then the diffraction field is concentrated along the X direction and has
the form (compare with Eq. (3))

EX(X,Z, t) = −E0 cosωt
X
N

R20(Z
2 − (X −NA)2)

(Z2 + (X −NA)2 .

The Fourier transform of the diffraction field is

EX(K, Z) = −E0 πR
2
0

A|Z| |KZ|e
−|KZ|, (8)

where

K(M) = KeX = (K1,K2) =
2πM

A
(sinϕ, cosϕ)

with positive integer M . This means that all the points K lie on the same
ray oriented along the positive direction of the X axis. The vector K(M)
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for a fixed M can be uniquely represented as a sum of quasimomenta lying
in the first BZ and two reciprocal lattice vectors

K(M) = q(M) +m1(M) +m2(M).

The field components

E1K = EX(K,D + d) sinϕ,

E2K = EX(K,D) cosϕ (9)

parallel to the quantum wires can excite plasmons and contribute to the
absorption process.

The Hamiltonian (1) of QCB interacting with an external field in Fourier
representation reads,

HE =
~L
2vg

X
jK

fj,K

³
θj,K + θ†j,K

´
,

where

fj,K =

√
2vge

~
√
a
Ej,K, m =m1 +m2.

The equations of motion for boson fields have the form

θ̈1,q+m1 + ω2q1+m1Qθ1,q+m1 + 2γθ̇1,q+m1 +

+
X
m2

Φq+mθ2,q+m2 = L
X
M,m2

f1,KδK,q+m,

θ̈2,q+m2 + ω2q2+m2Qθ2,q+m2 + 2γθ̇1,q+m1 +

+
X
m1

Φq+mθ1,q+m1 = L
X
M,m1

f2,KδK,q+m, (10)

where

Φk = φξk1ξk2 , ξk = ωksignk, ωk = v|k|,
and γ is the same phenomenological attenuation coefficient as in Subsection
3.1. Only the first few modes in the sum over K in the r.h.s. of Eq. (10)
effectively excite the QCB plasmons. Indeed, the diffraction field (8) is
proportional to the same dimensionless function of the type te−t (t = KZj)
as in the previous subsection (see Eq. (4)). This function has its maximum
at t = 1 and differs significantly from zero for 0.2 < t < 2.7. For a = 20 nm,
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D = 2 nm, it is of order unity within the interval 0.18Q < K < 2.13Q for
the first array (Z1 = D + d), and within the interval 0.36Q < K < 4.26Q
for the second array (Z1 = D). This means that one can excite the modes
of the four lower bands (K < 2Q) of the first array and the modes of eighth
lower bands (K < 4Q) of the second array.

According to Eqs. (9) the field EjK(M) is coupled with plasmons of wave
vectors q + mj = q(M) + mj(M) within the j-th array. The nature of
the excited plasmons as well as their frequencies depend on the direction
of the vector K(M). For simplicity we restrict ourselves by acute angles
0 < ϕ < π/2 describing orientation of both DL and vector K(M). There
are four kinds of dimensional crossover depending on specific directions in
the BZ. Each type of crossover is characterized by its own set of absorption
lines. The first one takes place in a common case when K(M) for any
M never reaches neither a resonant direction nor the BZ boundary. The
second case corresponds to the bisectorial direction ϕ = π/4 where the main
resonant condition ω(K1) = ω(K2) is fulfilled. The third group of directions
is determined by another resonant condition ω(K1) = ω(nQ∓K2). Finally,
the fourth group is formed by directions intersecting with the BZ boundaries
for some values ofM. In what follows we consider these four cases separately.

1. In the general case, the points K(M) for all M are far from the
BZ diagonals and boundaries. Therefore each of them corresponds to two
plasmons mostly propagating along the j-th array, j = 1, 2, with unper-
turbed frequencies ωKj(M) = vKj(M). The inter-array interaction slightly
renormalizes the eigenfrequencies

ω21K = ω2K1 + φ2
X
m2

ω2K1
ω2K2+m2Q

ω2K1 − ω2K2+m2Q

,

ω22K = ω2K2 + φ2
X
m1

ω2K2
ω2K1+m1Q

ω2K2 − ω2K1+m1Q

.

Thus, increasing the frequency of an incident light one observes a set of
single absorption lines that consists of two almost equidistant subsets with
frequencies corresponding to excitation of plasmons in the first or second
arrays. The distances between adjacent lines within each subset are

∆ω1 = v∆K1 = 2πv sinϕ/A,

∆ω2 = v∆K2 = 2πv cosϕ/A,
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and their ratio depends on the DL orientation ϕ only

∆ω1
∆ω2

= tanϕ.

The equations of motion for the “coordinate” operators ω1K and ω2K can
be written in the resonant approximation as:

θ̈jK + ω2jKθjK + 2γθ̇jK = fjK, j = 1, 2.

The relative absorption is of the Lorentz type

∆I1K
I0

= 2g
e2

~c

µ
πR20
AD

¶2
γvQ

(ω − ω1K)
2 + γ2

¡
KDe−KD cosϕ

¢2
,

∆I2K
I0

= 2g
e2

~c

µ
πR20
AD

¶2
γvQ

(ω − ω2K)
2 + γ2

³
KDe−K(D+d) sinϕ

´2
.(11)

2. In the resonant case ϕ = π/4, the condition K1(M) = K2(M) is
satisfied for all M . Therefore modes propagating along the two arrays are
always degenerate. Inter-array interaction lifts the degeneracy. Indeed, in
the resonant approximation, the coupled equations of motion for the field
operators read

θ̈1K + ω2K1θ1K + φω2K1
θ2K + 2γθ̇1K = f1K,

θ̈2K + ω2K1θ2K + φω2K1
θ1K + 2γθ̇2K = f2K.

After symmetrization θg,u = (θ1K ± θ2K)/
√
2, they have the same form

θ̈αK + ω2α,K1
θαK + 2γθ̇αK = fα,K, α = g, u,

where

ωg/u,K1
= ωK1

µ
1± 1

2
φ

¶
are the renormalized frequencies and

fg/u,K = (f1K ± f2K)/
√
2.

The amplitudes fαK are of the same order of magnitude because the dis-
tances D and d have the same order of magnitude. As a result, increasing
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the frequency of an incident light one observes an equidistant set of absorp-
tion doublets with distance π

√
2v/A between adjacent doublets (see Fig. 7).

The relative absorption is of the Lorentz type

∆Ig/u,K

I0
=
g

2

e2

~c

µ
πR20
AD

¶2
γvQ¡

ω − ωg/u,K1

¢2
+ γ2

h
KD

³
e−KD±e−K(D+d)

´i2
.

(12)

Figure 7: Absorption doublets (isolated peaks) in the resonant direction
ϕ = π/4. Two envelopes corresponding to two components of each doublet
are rather distingiushable.

3. Consider now the directions ϕ determined by the equation

sin
³
ϕ± π

4

´
=

nA√
2M0a

, (13)

where n andM0 are mutually prime integers. For this direction, two compo-
nents of the first M0− 1 points K(M) do not satisfy any resonant condition
while the M0-th one does

K1(M0)±K2(M0) = nQ. (14)
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With increasingM this situation is reproduced periodically so that all points
K(pM0) with p integer satisfy a similar condition with pn standing instead
of n, while all intermediate points are out of resonance.

In the zero approximation with respect to the inter-array interaction we
expect appearance of two sets of absorption lines with frequencies pωj =
vKj(pM0), j = 1, 2, corresponding to excitation of plasmons within the
pmj(M0)-th band of the j-th array. The ratio of the frequencies ωj is defined
by DL orientation

ω1
ω2
= tanϕ.

The relative absorption for these lines is described by Eqs.(11). However,
due to the resonance condition (14), a plasmon in the first array with the
wave vector K = (K1(pM0),K2(pM0)) and frequency ω1 = vK1(pM0) is
coupled with a plasmon in the second array with the same frequency and the
wave vector K0 = (K2(pM0),K1(pM0)) (inter-array degeneracy). Similarly,
a plasmon in the second array with the wave vectorK = (K1(pM0),K2(pM0))
and frequency ω2 = vK2(pM0) is coupled with a plasmon in the first array
with the same frequency and the wave vector K0 = (K2(pM0),K1(pM0)).
This degeneracy of two modes corresponding to the same band but to differ-
ent arrays is lifted by the inter-array interaction. As a result one has two sets
of doublets instead of two sets of single lines. In the resonant approximation,
the coupled equations of motion for the field operators read

θ̈1K + ω2K1θ1K + φω2K1θ2K0 + 2γθ̇1K = f1K,

θ̈2K0 + ω2K1
θ2K0 + φω2K1θ1K + 2γθ̇2K0 = 0, (15)

where K = (K1,K2), K
0 = (K2,K1), K1 and K2 satisfy the resonance

condition (14). The similar equations take place for the operators θ1K0 and
θ2K. After symmetrization θg,u = (θ1K ± θ2K0)/

√
2, they have the same

form

θ̈α + ω2αK1θα + 2γθ̇α =
1√
2
f1K.

The relative absorption is of the Lorentz type

∆Ig/u,K
I0

= g
e2

~c

µ
πR20
AD

¶2
γvQ¡

ω − ωg/u,K1
¢2
+ γ2

¡
KDe−KD cosϕ

¢2
. (16)

The relative absorption for the second doublet is obtained from Eq. (16)
after permutation K1 → K2 and replacement D → D + d in the exponent
expression.
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Thus, for such orientation of DL, when increasing the frequency of an
incident wave one should observe two equidistant sets of single absorption
lines with two sets of equidistant doublets built in these series

ω1K = ωK1(pM0)

µ
1± 1

2
φ

¶
,

ω2K = ωK2(pM0)

µ
1± 1

2
φ

¶
.

Consider the case n = 1 and A/a = 5, which corresponds to the realistic
values of the parameters a = 20 nm and A = 100 nm. Here the first angle
that satisfies Eq. (13) appears at M0 = 4 and equals ϕ1 ≈ 17◦070. Two
lowest doublets of each sequence of doublets correspond to p = 1 and are
centered around the frequencies 4ω1 = 0.76vQ and 4ω2 = 0.24vQ. The lower
of them lies within the first energy band, whereas the upper one lies in the
second band. The singlet absorption lines generated by the frequency ω1 and
one series of the doublets corresponding to frequencies multiple integer to
4ω1 are displayed in Fig. 8. Surprisingly, one can see an additional doublet
opening additional series of doublets with frequencies 15ω1. The reason is
that the chosen direction ϕ1 is very close to another one higher resonance
direction ϕ2 ≈ 16◦520 satisfying to Eq. (13) with M0 = 15, n = −2, and the
sign “minus” in the l.h.s..

4. It seems that a similar behavior should be observed in the case when
the points KpM lie at one of the BZ boundaries, i.e. satisfy the relation

Kj(pMj) =
npQ

2

with some specific values j, Mj and n. Such situation is realized at specific
angles that depend on the integers j, n,Mj . In the vicinity of the points
K(pMj) two frequencies corresponding to the unperturbed modes of the j-
th array from the np-th and (np+ 1)-th bands coincide. This is the case of
inter-band degeneracy that is also lifted by inter-array interaction. Due to
the square symmetry (invariance with respect to xj → −xj inversion), only
one of the two components with frequency ω = v|Kj(pMj)| may be excited
by a diffraction field. Therefore, this case does not differ from the case 1
considered above and two sets of equidistant single lines can be observed.

We emphasize that studying absorption of light by QCB one can expose
not only the known [19] dimensional crossover with respect to an angle
(direction), but also occurrence of a new type of crossover with an external
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Figure 8: Absorption spectrum in a higher resonance direction ϕ ≈ 17◦

contains two sets of doublets with periods 4ω1 and 15ω1.

frequency as a control parameter. This occurs for special directions of type
3 where, with increasing frequency, the set of single lines is periodically
intermitted by doublets.

4 Conclusion

In conclusion, we have investigated the possibility of spectroscopic studies
of the excitation spectrum of quantum crossbars, which possesses unique
property of dimensional crossover both in spatial coordinates and in the
(q,ω) coordinates. It follows from our studies that the plasmon excitations
in QCB may be involved in resonance diffraction of incident electromagnetic
waves and in optical absorption in the IR part of the spectrum. This ab-
sorption strongly depends on the direction of the wave vector q. One can
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observe dimensional crossover from 1D to 2D behavior of QCB by scanning
an incident angle. The crossover manifests itself in the appearance of a set of
absorption doublets instead of the set of single lines. At special directions,
one can observe new type of crossover where doublets replace the single lines
with changing frequency at a fixed q direction.

Numerous helpful discussions with K. Kikoin, and Y. Avishai are greatly
appreciated.
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