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Abstract

While Quantum dots connected on both sides to normal metallic
leads is a central research topic in contemporary condensed matter
physics, there is now a growing interest in the question of what hap-
pens if one or both leads are superconducting. In a series of papers we
have developed a theoretical basis for the relevant physical situation.
As it turn out, the resulting physical observables strongly depend on
the symmetry of the superconducting electrodes order parameter. pre-
viously, we have studied the case of s-wave superconducting electrodes.
Here, in this work, the physics of junctions containing p-wave super-
conducting and normal leads weakly coupled to an Anderson impurity
in the Kondo regime is elucidated. For unconventional (unlike s wave)
superconducting leads, mid-gap surface states play an important role
in the tunneling process and help the formation of the Kondo reso-
nance. The current, shot-noise power and Fano factor are calculated
and displayed as functions of the applied voltage V in the sub-gap
region eV < ∆ (the superconducting gap). In addition, the Joseph-
son current for a quantum dot in the Kondo regime weakly coupled
on both sides to p-wave superconductors is computed as function of
temperature and phase. The peculiar differences between the cases of
s-wave and p-wave superconducting leads are pointed out.
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1 Introduction

This research focuses on transport through an interacting quantum dot in
the Kondo regime weakly coupled to p-wave superconducting leads [1]. It is
quite conceivable that the role of the quantum dot can be played also by a
single molecule or by a Carbon nano-tube. Recently, it has been unambigu-
ously established that the Kondo physics [2] plays an important role in elec-
tron transport through quantum dots, where instead of a magnetic impurity
one encounters localized electrons [3 - 5]. Observations of the Kondo effect
in transport through quantum dots [6, 7], in carbon nano-tubes (CNT ) [8],
in vertical dots [9], and in single molecules [10] demonstrate the feasibility
of exploiting tunable physical parameters in these systems in order to yield
important information on the Kondo physics and other many-body related
phenomena.

The Kondo physics in a quantum dot attached on both its sides to nor-
mal metallic leads received much recent attention. Many experiments and
theoretical investigations are devoted to its study ever since the first ex-
periments were reported in 1998. Recently, it has been realized that novel
physical effects emerge if (one or both) electrodes is a superconductor [11].
Hereafter we abbreviate by N a normal metallic lead, by S a superconduct-
ing lead and by K a quantum dot in the Kondo regime weakly attached
to N and/or S leads. SKS and SKN junctions can now be fabricated in
laboratories. Moreover, there are also natural candidates: Fabrication of
superconducting junctions with a weak link formed by CNT have already
been reported [12, 13].

In a series of recent works [14, 15] we have developed a formalism for
the study of transport in SKN and SKS junctions. It is then useful to
state clearly at this point the peculiar aspects of the present work com-
pared with the previous ones. In Ref. [14] the underlying physics of SKS
and SKN junctions was analyzed out of the Kondo regime, that is, at
∆ À TK (the Kondo temperature), while in Ref. [15] attention is focused
on SKS junctions for which the leads are composed of s-wave superconduc-
tors. Here we are particularly interested in electron transport in the Kondo
regime in SKN junctions for which the S lead is composed of a p-wave su-
perconductor. The physics of junctions with p-wave superconducting leads
is essentially distinct from that pertaining to junctions with s-wave super-
conducting leads (especially in the Kondo regime) as is carefully explained
and underlined below. Thus, while we heavily rely on the computational
machinery developed earlier, the results obtained here are novel.

One of the crucial differences between the case of normal and supercon-
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ducting leads touches upon the question of how electrons are transport from
one lead to the other. The central electron-transport mechanism in SKS
and SKN junctions is that of Andreev reflections when two particles tunnel
together coherently to form a Cooper pair in the superconductor. Of course,
Andreev reflections play an important role in bulk SIS and SN junctions
(here I denotes an insulating layer). In the former case they are responsi-
ble for occurrence of direct Josephson current while in the latter case they
enhance the conductance by a factor 2.

What is the role of Andreev reflections in quantum dots such as SKS
and SKN junctions? The answer to this question is rather interesting and
exposes a subtle distinction between the cases of s-wave and p-wave super-
conductors. The pertinent physics is governed by the interplay of Andreev
reflections and the formation of the Kondo-resonance in the spectral den-
sity of states of the dot electron [11]. In the case of an SKN junction
when one electrode is an s-wave superconductor and the Kondo impurity
is weakly coupled to the S and N electrodes, the physics is determined by
competition between two phenomena. The first one is the formation of a
Kondo singlet which screens the bare impurity spin and drives the system
toward the unitary limit at very low temperatures. The second one is the
existence of the superconducting gap which implies a vanishingly small den-
sity of low energy electron states [16 - 18]. These are precisely the electron
states which are needed in order to screen the Kondo impurity. A relevant
parameter in this context is the ratio between the Kondo temperature and
the superconducting gap,

tK ≡
TK
∆
. (1)

When tK < 1, the Kondo effect is suppressed by the superconducting gap
while for tK > 1, the Kondo effect (close to the unitary limit) and super-
conductivity coexist. Indeed, for tK > 1, electron states outside the gap can
participate in the screening interaction. Several works have studied these
aspects both for tK < 1 [18, 16], and for tK > 1 [17, 15, 19, 20]. In a
recent experiment [13], a crossover around tK = 1 has been realized in SKS
junctions.

Consider, on the other hand, an SKN junction in which the S electrode
consists of an unconventional superconductor. To be more specific, we mean
superconductors with triplet pairing, such that the order parameter has a
p-wave orbital symmetry. Such p-wave superconductors have recently been
discovered by Maeno et al [1] in Sr2RuO4. The fact that in these supercon-
ductor the order parameter is not rotationally symmetric implies a special
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importance for its orientation when it is integrated into a junction. In par-
ticular, let us assume that the superconductor is oriented relative to the
interface in such a way that the pair potential reverses its sign on the Fermi
surface. In this case, zero-energy states (ZES) are formed (that is, inside
the gap), which are localized near the surface of the unconventional super-
conductor. These states can now participate in screening the impurity spin
through the Kondo effect and emergence of sub-gap current is expected.
For example, in the experimentally feasible setup of S − CNT − N where
just a few tunneling channels are present, charge is carried mainly by quasi-
particles moving perpendicular to the interface. This restricts the possible
values of the angle θ between the superconducting surface and the direc-
tion of the injected quasiparticles [21]. Formation of ZES is possible when
∆(θ) = −∆(π − θ). If the impurity is almost point-like, the relevant injec-
tion angle is of course θ = 0. For impurities of finite extent, one may also
consider formation of ZES in d-wave superconductors. Thus, the physics
of SKN junctions with an S electrode whose order parameter has a non-
trivial symmetry is affected by the formation of ZES in the Kondo regime.
In short, the physics of SKN junction will be prominently different between
s-wave on the one hand and p or d-wave superconductors on the other hand.

The question now arises is whether the above mentioned distinction be-
tween the cases of s-wave and p-wave superconducting electrodes can be
elucidated. We answer it positively by calculating a number of transport
observables in SKN junctions for several values of tK . Beyond investigat-
ing the conductance dependence on the applied bias we also explore the
shot-noise and the Fano factor. Moreover, at zero bias we also consider
SKS junctions and analyze the Josephson (direct) current dependence on
the phase difference between the two superconductors as well as on the tem-
perature. In Section 2 the model Hamiltonian is written in terms of the
slave boson formalism. The Green functions pertaining to p wave supercon-
ducting leads are introduced and the mean-field slave boson approximation
(MFSBA) is briefly discussed. Calculations and presentations of conduc-
tance, shot-noise power and Josephson current are respectively detailed in
Sections 3, 4 and 5.

2 Model Hamiltonian and p wave Green functions

The formalism employed below is the slave boson mean-field approximation,
explained and justified in our earlier works [14, 15]. Therefore we will skip
most of it except the definitions of Green functions peculiar for the case
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of p-wave superconducting lead. The model Hamiltonian of SKN or SKS
junctions is represented by the Anderson model with the superconducting
lead:

H = HL +HR +Hd +Ht +Hc, (2)

in which Hj (j = L,R) are the Hamiltonians of the electrodes which depend
on the electron field operators ψaσ(r, t) at r = (x, y) with the spin σ = ±.
For a superconducting lead we have,

Hj =
X
j=L,R

Z
j
dr
³
ψ†j,+(r)ψj,−(r)

´µ ξ(∇) ∆j
∆∗j −ξ(∇)

¶Ã
ψj,+(r)

ψ†j,−(r)

!
, (3)

where ξ(∇) = −∇2/2m − µ with the chemical potential µ depends on
the bias voltage V , and ∆ is the Cooper pairing potential. For s-wave
superconductor, ∆ is isotropic (in fact it is a constant) while for p-wave
superconductor, ∆ is anisotropic and depends on the two dimensional mo-
mentum vector: ∆(α) = |∆|(kx + iky)/|k| = |∆| exp(iα) with with the az-
imuthal angle α = arctan(ky/kx). This pairing potential changes the sign:
∆(α) = −∆(π − α). For a normal lead, ∆ = 0 of course.

The quantum dot consists of a single energy level ²0 < 0 with Coulomb
interaction U . We assume that U → ∞ to exclude double occupancy of
electrons in the dot. In this scheme, the annihilation operator dσ of electron
in the dot is written as dσ = b

†cσ with the slave boson operator b and the
pseudo fermion operator cσ and the constraint term of Hc:

Hc = λ(
X
σ

c†σcσ + b
†b− 1), (4)

where λ is a Lagrange multiplier [22]. The corresponding dot and tunneling
Hamiltonians, Hd and Ht are expressed as:

Hd = ²0
X
σ

c†σcσ,

Ht =
X
jσ

Tjc
†
σbψjσ(0, t) + h.c., (5)

where Tj is the tunneling amplitude. If the quantum dot is almost point-like,
the relevant value of α for the paring potential is zero.

Since electron field in the dot couples only with ψjσ(0, t), (referred to
as surface states), we can integrate out electron fields inside the lead [14].
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Following Ref. [15] let us consider the dynamical “partition function”

Z ∼

Z
D[F ] exp(iS), (6)

where the path integral is carried out over all fields [F ] and the action S is
obtained by integrating the Lagrangian pertaining to the Hamiltonian (2)
along the Keldysh contour. In performing the functional integrations the
boson field operators are treated as c-numbers. As a result one arrives at
an effective action expressed in terms of the Green functions of the leads.

Seff = −iTr ln Ĝ
−1 −

Z
dt[λ̂σz(b̂b̂− 1)]. (7)

Here λ̂ = (λ1,λ2), b̂ = (b1, b2) and σz are diagonal matrices acting in Keldysh
space. The inverse propagator Ĝ−1 depends on the Green functions of the
electrodes [14]. Performing the standard basis rotation in Keldysh space one
finds,

Ĝ−1(², ²0) = δ(²− ²0)(²− τ z ²̃−
Γb2

2
τ z ĝ+(²)τ z), (8)

where ²̃ = ²0 + λ is the renormalized level position (in the Kondo limit
one has ²̃ ' 0) and Γ = (ΓL + ΓR)/2 ∝ TL,R2 is the usual transparency
parameter. The 2 × 2 matrix representation (in Keldysh space) for g is
composed of diagonal elements ĝR/A(²) and an upper off-diagonal element
ĝK(²) = (ĝR − ĝA) tanh(²/2T ). Here and below we define

ĝ± = γLĝL ± γRĝR, (9)

with asymmetry parameters γj = Γj/Γ. The matrix ĝR has the standard
structure with retarded and advanced superconductor Green functions which
in the s− wave case reads,

ĝR/A(²) = i
(²± i0) + |∆|τxp
(²± i0)2 − |∆|2

, (10)

The retarded and advanced Green functions gR/A(²) for the surface states
of the p-wave superconductor with incident angle α is represented by 2× 2
matrices:

ĝR/A(²) = ĝ
R/A
1 1 + ĝ

R/A
2 τx, (11)
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with

ĝ
R/A
1 =

i
p
(²± 0)2 − |∆|2 cosα− ² sinα

² cosα+ i
p
(²± 0)2 − |∆|2 sinα

,

ĝ
R/A
2 =

i|∆|

² cosα+ i
p
(²± 0)2 − |∆|2 sinα

, (12)

employing the unit matrix 1 and the x component of the Pauli matrix τx.
The density of states ρ(²) of surface states is then given by ρ(²) = =ĝR11(²).
For p-wave superconductor with α = 0, ρ(²) includes mid-gap (ZES):

ρ(²) =

√
²2 −∆2

|²|
θ(|²|−∆) + π∆δ(²), (13)

while for the s-wave case, it includes no ZES, having the well-known BCS
form. This difference becomes important when the Kondo effect takes place,
because ZES strongly interact with the Kondo resonant state which appears
also at EF = 0.

Performing the variation of the effective action with respect to the fields
b and λ a couple of self-consistency equations are obtained that determine
these fields. In order to explicitly write down these self-consistency equations
let us introduce the bare Kondo temperature T 0K = Dexp[−πk²0|/(2Γ)] and
define a parameter X by Γb2 = T 0KX, where D is the energy bandwidth.
Then the MFSBA equations take the form

X = −
iΓ

2T 0K
TrĜKτ z, (14)

λ =
iΓ

8
Tr[ĜKτ z(ĝ

R
+ + ĝ

A
+) + (Ĝ

R + ĜA)τ z ĝ
K
+ ]τ z, (15)

where the trace includes energy integration as well. Eq. (14) effectively
determines the Kondo temperature (through the parameter X), and reflects
the constraint which prevents double occupancy in the limit U → ∞. The
second self-consistency equation (15) defines the renormalized energy level
position ²̃. Let us briefly discuss the validity range of the present analysis.

A comment on the validity of the mean field slave boson approximation
scheme and the relation to other approximation schemes is in order. It is
known that it gives an adequate description in the Fermi liquid regime of the
Kondo effect. (the strong coupling limit.) The Kondo effect is suppressed
by ∆ as well as by the applied bias voltage eV . If TK < max(∆, eV ), the
mean field approximation looses its validity. Fortunately, interesting fea-
tures appear in the sub-gap voltage regime eV ≤ ∆, as we will see below.
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Hence the validity of the approximation for the sub-gap region is intimately
related with the value of tK . Quantitatively , our approximation is reliable
for sufficiently large tK . On the other hand, when tK < 1, the Kondo effect
is strongly suppressed by superconductivity and consequently we need an-
other approximation scheme such as the non-crossing approximation (NCA)
developed in Ref. [18]. This approximation, however, fails to describe the
Fermi liquid picture, specified by the region of tK À 1. Thus, the mean
field approximation constitutes a bridge in calculation methods between the
low temperature regime (when the system is a Fermi liquid) and the regime
where the NCA is valid.

3 Conductance

The tunneling current I through the quantum dot is given by I = hÎ(t)i
with

Î(t) =
−ie

~
X
jσ

[Tjc
†
σbψjσ(0, t)− h.c.] (16)

and has a simple representation [15] in terms of the dot Green function,

I = i
eXtK
8~

Tr[(ĜRτ z − τ zĜ
A)ĝK− − Ĝ

K g̃], (17)

where for SKN junctions we denote

g̃ = −γR(ĝ
Rτ z − τ z ĝ

A)− 2iγLτ z. (18)

Being combined with eqs. (14) and (15) the result (17) can be conveniently
used for computing the transport current and the differential conductance of
an SKN junction in the Kondo regime for different values of tK and eV/∆.
Here we present the result of our calculations putting special emphasis on
the distinction between s-wave and p-wave superconducting leads.

Fig. 1 shows the conductance G = dI/dV and its dependence on V
in SKN junctions for both s-wave and p-wave superconducting leads for
tK = 100, 5, 3, and 2 with Γ/T

0
K = 200. When tK = 100 (the upper curves

in Fig.1), the G− V curve shows no difference between s-wave and p-wave
superconductors; G = 4e2/h when eV < ∆ and G decreases gradually when
eV > ∆. In this limit, the Kondo resonance reaches the unitary limit,
and consequently, this SKN junction reduces to an SN junction with pure
ballistic contact, which has already been analyzed [11]. Indeed, in the limit
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Figure 1: The conductance G (in units of e2/h) versus the bias V (in units of
∆/e) for an s-wave (dash curves) and p-wave (solid lines) SKN junctions at
sub-gap voltages with Γ/T 0K = 200. The parameter tK takes values 2,3,5,100
(from down up). The upper line corresponding to tK =100 coincides for s
and p wave superconducting leads.

of large tK À 1, the expression for the current (16) reduces to that derived
in Ref. [11]. For lower values of tK the distinction between s-wave and
p-wave leads becomes prominent.

For s-wave superconductor, as tK decreases, the Kondo state is driven
away from the unitary limit. For tK = 5 the G−V curve noticeably deviates
from the one of tK = 100, reflecting the suppression of the Kondo effect
due to both ∆ and V . For tK = 2 the competition between gap-related
suppression of the Kondo effect and the effective transparency of the junction
becomes essential, leading to further decrease of the conductance. However,
it is interesting to note that for an S(s-wave)KN junction at tK = 2 the
conductance displays a small peak at the gap edge. Its interpretation is
that the Kondo correlations strongly compete with superconductivity and
influence the quasiparticle correlations when the energy exceeds the gap.
Such an effect takes place even when tK < 1 (see [18]).

For p-wave superconductor, the G − V curves are less influenced by
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variations of tK in contrast to the situation found for s-wave superconductor,
indicating superconductivity plays a minor role in the suppression of the
Kondo resonance and the result reported in Ref. [11] persists for smaller
values of tK . The upshot is that ZES support the formation of a Kondo
singlet for lower values of tK , and effectively turn the junction to be more
transparent, approaching the unitary limit [11].

4 Shot-noise

The shot-noise power is defined as the symmetrized current-current correla-
tion function

K(t1, t2) = ~[hÎ(t1)Î(t2)i− hÎi2], (19)

with the current operator Î defied in equation (16). The Fourier transform of
K(t1, t2) gives the shot noise power spectrum K(ω). The general expression
for the zero frequency shot-noise K(0) has been obtained within the mean
field slave boson approximation [15]. It is convenient to write it as K =
(K1 +K2)e

2∆/(8~) for which the expressions derived are,

K1 =
XtK
2
Tr{(ĝR+ − ĝ

A
+)(Ĝ

R − ĜA)− ĝK+ Ĝ
K}, (20)

K2 = −
(XtK)

2

8
Tr{(ĜK g̃)2 − 2τ z g̃τ zĜ

Ag̃ĜR −

[2g̃ĜRτ z ĝ
K
− Ĝ

K − (ĜAĝK− τ z)
2 + h.c.]}. (21)

Expressions (20) and (21) (supplemented by the self-consistency eqs.
(14) and (15)) are then solved numerically for a set of parameters Γ/T 0K ,
tK .

In Figs. 2 and 3, the zero-energy shot-noise power K and the Fano factor
K/(2eI) are displayed versus the applied voltage V for tK=100, 5, 3 and
2 and for Γ/T 0K=200. These results are clearly correlated with those for
the G − V curve and can be summarized as follows: In the limit tK À 1
the characteristics of shot-noise power spectrum for both s-wave and p-
wave superconductors are consistent with those obtained for purely ballistic
junctions which exhibit strong suppression of the shot-noise power in the
sub-gap region. At lower tK the physics is distinct. For tK = 5 the noise
spectrum for s-wave superconducting lead still shows features typical for a
junction with relatively high transparency, while the results for tK=2 are
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somewhat resemble those for a low transparency junction. Such dependence
is explicitly exposed in the plot of the Fano factor versus the applied voltage
(see Fig. 3).

Figure 2: The shot-noise power K(0) (in units of e2∆/h) as a function of
V (in units of ∆/e) for an SKN junction and for several values of tK (tK
grows from top to bottom). Dashed (solid) curves correspond to s-wave
(p-wave) superconducting lead. The parameters and notations are the same
as in Fig. 1. The curves with tK=100 for s and p wave superconductors
coincide.

Though the Fano factor does not reach the maximum value of 2, it is
strongly enhanced for the smaller value of tK = 2. For p-wave superconduc-
tor the shot-noise power (as function of voltage) reflects the same physics as
in the conductance: ZES turn the Kondo resonance to be less vulnerable
to the impact of superconductivity and the junction remains close to the
unitary limit almost in the whole range of values of tK considered here (see
the solid curves on Figs. 2 and 3).
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Figure 3: The Fano factor K/2eI as a function of V (in units of ∆/e) for an
SKN junction and for several values of tK (tK grows from top to bottom).
Dashed (solid) curves correspond to s-wave (p-wave) superconducting lead.
The parameters and notations are the same as in Fig. 1.

5 Josephson current

In this section we study an equilibrium property (Josephson effect) of an SKS
junction in which both electrodes are p-wave superconductors (for compar-
ison we also represent the results for s-wave superconducting leads).

The Free energy F for the Hamiltonian (2) is given by

F = −T
X
ω

ln
£
ω2(1 + α(ω))2 +e²2 + β(ω)2∆2 cos2(δ/2)

¤
+ λb2, (22)

with α(ω) = eΓ√ω2 +∆2/ω2, β(ω) = eΓ/ω, e² = ² + λ, eΓ = b2Γ and the
phase difference δ between two superconductors. Then the self-consistent
equations, δF/δλ = 0 and δF/δb2 = 0 read, respectively

e²+ 2Γ
π
log

e²
TK

=
X
ω

h
2Γ
(1 + α(ω))

√
ω2 +∆2 + β(ω)∆2/ω cos2 δ

2

(1 + α(ω))2ω2 +e²2 + β(ω)2∆2 cos2 δ
2

−
2Γ|ω|

ω2 +e²2
i
,

(23)
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eΓ = Γ
X"

2e²
(1 + α(ω))2ω2 +e²2 + β(ω)2∆2 cos2 δ

2

#
. (24)

Self consistent equations for the case of s-wave superconducting leads were
derived in Ref. [19].

The Josephson current is given by, I = (2e/~)∂F/∂δ, that is,

I =
e

~
X
ω

(β(ω)∆)2 sin δ

ω2(1 + α(ω))2 +e²2 + (β(ω)∆)2 cos2 δ
2

. (25)

The self-consistency equation and the expression for the Josephson current
can easily be extended to the case of an anisotropic coupling :ΓL/R = Γ(1±p)

(the anisotropy parameter 0 < p < 1). For this, one should replace cos2 δ
2 →

(cos2 δ
2 + p

2 sin2 δ
2) and I ∝ sin δ → I ∝ (1− p2) sin δ.

In the unitary limit TK À ∆, ²̃ = 0 we can approximate

α(ω) = eΓpω2 +∆2/ω2 À 1

since the relevant energy scale for the superconductor is ω ≤ ∆. As a result,
the Josephson current (25) for p-wave superconductor is

J =
2e∆

~
(1− p2)

4

tanh(β∆f(δ)/2)

f(δ)
sin δ (26)

with f(δ) =
p
1 + cos2(δ/2) + p2 sin2(δ/2), which is different from the one

for s-wave [23].
In Fig. 4, the Josephson current is calculated as a function of the phase

difference δ for a small anisotropy parameter p = 0.1 and for values of tK
=100, 5, 3, and 2 at temperatures close to T = 0.

For an s-wave superconductor (dashed lines in Fig. 4) the current at tK
=100 is nearly the same as the one at the unitary limit [23]; It deviates from
the sinusoidal form and reaches its maximum around δ = π. At lower values
of tK , the current characteristic is similar but its amplitude is suppressed.
Nevertheless, in this region of parameters, the Kondo effect overcomes su-
perconductivity and the impurity spin is screened. Hence there are no traces
of a π-junction.

For p-wave superconductor (solid lines in Fig. 4), the current at tK =100
is approximately given by Eq. (26), which is qualitatively different from that
obtained for the s-wave superconductor; The current has its maximal value
around π/2 and the curve is very close to being sinusoidal. This result is very
similar to the one encountered in SIS junctions. The mid-gap states act as
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Figure 4: Josephson current versus phase difference δ at T → 0. Dash and
solid curves correspond to s and p-wave superconductors, respectively. The
parameters are the same as in Fig.1. The value of tK decreases from top
downward.

if they increase the effective normal region of the junction and therefore, the
junction becomes more resistive, which makes the contact of the junction
less transparent, again in marked distinction from the s-wave case. Indeed,
the amplitude of the Josephson current is reduced compared with its value
for the s-wave junction.

Similar analysis holds for the temperature dependence of the Josephson
current. Fig. 5 displays the maximum Josephson current I(T ) as function
of temperature for s-wave (dashed lines) and p-wave (solid lines) supercon-
ducting leads. For p-wave junctions, I(T ) assumes relatively large values
near T = TC while for s-wave junctions, it decreases more rapidly as T in-
creases. The difference is more prominent when tK becomes smaller. These
results are explained by the same reasoning above; the temperature depen-
dence is more similar to the usual SIS junction for the p-wave case, while
for s-wave superconductors it is closer to the one in SNS junctions. This
difference stems from the existence of ZES. The situation is similar to the
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Figure 5: Temperature dependence of the maximum Josephson current for
s-wave (dashed curves) and p-wave (solid curves) superconducting leads for
tK =100, 5, 3 and 2 (from top to bottom). The phase δ of each curve is
chosen so as to give the maximum value of Josephson current at T = 0 in
Fig. 4. Other parameters are the same as in Fig. 1.

one encountered in Josephson current through an SIS system [24].
In conclusion, we have analyzed an important physical problem involving

strong correlations, the Kondo effect and unconventional superconductivity
in the regime T < ∆ < TK . These aspects can be realized in an SKN
junction consisting of an Anderson impurity in the Kondo regime. The S
electrode consists of a p-wave superconductor specially oriented with respect
to the contact surface allowing the formation of zero energy bound-states in
the middle of the gap. First, we have investigated non-equilibrium aspects
and elucidated the nonlinear G−V characteristics. Moreover, we calculated
the shot-noise power spectrum of SKN junctions at voltages eV ≤ ∆. It is
found that at sufficiently large tK the Kondo resonance effectively turns the
junction behavior to be similar to that of highly transparent non-interacting
weak links for both s and p-wave superconductors. However, when the
ratio of the Kondo temperature to the superconducting gap becomes smaller
the behavior of these two types of junctions is quite different: the Kondo
resonance persists much more effectively for junctions with p-wave leads
than it does for s-wave leads. Similar effects emerge also in the (equilibrium)
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Josephson current which has also been calculated above.
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