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Abstract

Non-equilibrium Coulomb effects in resonant tunneling through
deep impurity states are analyzed. It is shown that corrections to the
tunneling vertex caused by the Coulomb potential result in a nontrivial
behavior of tunneling characteristics and should be taken into account.
One encounters effects similar to the Mahan edge singularities in the
problem of X - ray absorption spectra in metals. The Coulomb vertex
corrections lead to a smoothed power law singularity in current-voltage
characteristics. The effect is well pronounced if tunneling rate from a
deep impurity level to metallic tip is much larger than relaxation rate
of non-equilibrium electron density at the localized state. This condi-
tion can be satisfied in experiments with a deep impurity state in the
semiconductor gap.

PACS: 73.40.Gk

Coulomb interaction plays great role in tunneling processes in ultra small
junctions. Experimentally investigated junctions are of very different nature,
made by different technology, so in various experiments various Coulomb ef-
fects can be observed. First of all Coulomb blockade and Kondo effects
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should be mentioned here. Now it is clear that non-equilibrium electron
distribution in the tunneling contact area and interaction between tunnel-
ing particles give rise to strong modification of initial local density of states
and tunneling conductivity spectra. We show that tunneling transfer ampli-
tude itself can be also changed by Coulomb interaction of conduction elec-
trons in a lead with charges localized at impurity states in contact area. If
the renormalization of tunneling amplitude is strong enough then smoothed
power-law singularity in current-voltage characteristics appears near some
threshold voltage.

Let us discuss the junction of the type: semiconductor-impurity state-
metallic lead. This system can be described by the Hamiltonian Ĥ:

Ĥ = ĤL + ĤR + Ĥimp + ĤT + Ĥint, (1)

where:

ĤR =
X
kσ

(εk − µ)c+kσckσ, ĤL =
X
pσ

(εp − µ− eV )c+pσcpσ (2)

describes the electron states in the metallic lead (tip) and the semiconductor
correspondingly, c+kσ(ckσ) and c

+
pσ(cpσ) describe creation (annihilation) of

electron in states (kσ) and (pσ) in metal and semiconductor.

Ĥimp =
X
dσ

εdc
+
dσcdσ + Undσnd−σ (3)

corresponds to a localized impurity state. We shall consider the situation
with single occupied impurity level at zero applied voltage due to the on-site
Coulomb interaction. However, when analysing behavior of tunnelling cur-
rent at applied voltage close to the impurity energy εd, the on-site Coulomb
repulsion of localized electrons can be omitted, because in this situation the
impurity state becomes nearly empty above the threshold value of the ap-
plied bias. Let us also point out, that the Kondo regime is destroyed on
Anderson impurity for the values of applied bias approaching the thresh-
old [1, 2]. In this case the Kondo-effect is not responsible for any unusual
features of the tunnelling characteristics .

Tunnelling transitions from the impurity state to the semiconductor and
the metal are described by the term:

ĤT =
X
kp

(Tkdc
+
kσcdσ + Tpdc

+
pσcdσ) + h.c.. (4)
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And, finally, the term Hint includes the Coulomb interaction of the core
(impurity) hole with conduction electrons in the metal.

Ĥint =
X
kk0σσ0

Wkk0c
+
kσck0σ(1− c+dσ0cdσ0). (5)

Hamiltonian Hint appears as a many-particle interaction and describes re-
arrangement of conduction electrons in the potential of the hole, suddenly
”switched on” by tunnelling transition of the impurity electron. Scattering
by the impurity hole Coulomb potential does not change the electron spin.
Thus in the lowest order in Tkd we can consider renormalization of the tun-
nelling amplitude independently for each spin - the same one for conduction
and impurity electrons. We use for simplicity an averaged value of screened
Coulomb interaction describing s - wave scattering of conduction electrons
by a deep hole Wkk0 = W . It is convenient to describe the tunneling cur-
rent in the framework of Keldysh diagram technique for non-equilibrium
processes [3]. The general form of kinetic equations is

( bG−10 − cG∗−10 ) bG< = (bΣ bG)< − ( bGbΣ)<,
where bΣ usually includes all the interactions. If bΣ is determined only by the
tunneling coupling to the leads, then the kinetic equation takes the form

i
∂

∂t
G<dd =

X
p

Tp(G
<
pd −G<dp) +

X
k

Tk(G
<
kd −G<dk).

The right-hand side of this equation determines the currents from impu-
rity to semiconductor and to metal lead respectively. We rewrite the current
in the following way (we set charge e = 1):

I(V ) = Im(J(V )), J(V ) = i
X
k,σ

Z
dωTkdG

σ<
kd , (6)

where we have defined a tunnelling ”response function” J(V ). If the Coulomb
interaction is neglected one can obtain the usual expression for this response
function in the lowest order in Tkd:

J0(V ) = i
X
k,σ

Z
dωT 2kd(G

σ<
kk G

σA
dd +G

σR
kk G

σ<
dd ) (7)
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Substituting the corresponding expressions for the Keldysh functions [4]
and performing integration over k we get:

J0(V ) = γt

Z
dω

·
n0k(ω)

ω + eV − εd + i(γ + γt)
+

nd(ω)(−i(γ + γt))

(ω + eV − εd)2 + (γ + γt)
2

¸
,

(8)

where the tunnelling rate γt = T
2
kdν, and ν the unperturbed density of states

in the metallic tip. Kinetic parameter γ corresponds to the relaxation rate
of electron distribution in the localized state. In the suggested microscopic
picture (eq.(4)) this relaxation rate is determined by weak enough electron
tunnelling transitions from the impurity to the semiconductor continuum
states γ = T 2pdνp. (In general γ can include different types of relaxation
processes.)

Non-equilibrium impurity filling numbers nd(ω) are determined from ki-
netic equations for the Keldysh functions G<:

nd(ω) =
γn0p(ω) + γtn

0
k(ω)

γ + γt
. (9)

Thus for low temperatures :

J0(V ) = γt ln(|X|)
+ i

γtγ

γ + γt
[arcctg((eV − εd)/(γ + γt))− arcctg((−εd)/(γ + γt))]

(10)

with

X = (eV − εd + i(γ + γt))/D), (11)

where D is the band width for electrons in metal.
The usual form of the tunnelling current is of course reproduced from

Eqs.(6, 8, 10).

I0(V ) =
γtγ

γ + γt

Z
ImGRd,d(ω)(n

0(ω)− n0(ω − eV ))dω.

Now let us consider renormalization of the tunnelling amplitude and ver-
tex corrections to the tunnelling current caused by the Coulomb interaction
between the impurity core hole and electrons in the metal. Many particle
picture strongly differs from the single-particle one near the threshold volt-
age. First order corrections due to the Coulomb interaction (the first graph
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Figure 1: Coulomb corrections to Tkd. Solid lines represent Gk and dashed
lines – Gd. a)Ladder approximation, b)Parquet graphs (Coulomb wavy
lines are redrawn as black circle vertexes).

in Fig. 1a) has a logarithmic divergency at the threshold voltage eV = εd,
which is cut off by the finite relaxation and tunnelling rates.

J1(V ) = i
X
k,σ

Z
dωTkd(−Gσ<

kk G
σA
dd T

1++
kd +GσR

kk G
σ<
dd T

1−−
kd ). (12)

Here tunnelling matrix elements are changed in first order by the Coulomb
interaction:

T 1−−kd =
X
k,σ

Z
dωTkdW (G

σ<
kk G

σA
dd +G

σR
kk G

σ<
dd ). (13)

We see from Eq. (9) that for γt À γ the impurity level becomes nearly
empty when the value of applied bias voltage crosses the impurity energy
and n0k(εd) ' 0. Though n0p(εd) = 1, nd(εd) << 1 and there is really a
positively charged hole in the impurity state. In this situation only the first
term in Eq.(13) is relevant above the threshold voltage. Thus a logarithmic
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contribution comes from the following combination of the Green functions:
Gσ<
kk G

σA
dd . In what follows we retain only logarithmically large parts, as-

suming that |ln((γ + γt))/D)| À 1, so only these combinations of Green
functions are the most important in perturbation series. Then we obtain
from (13) that the tunnelling amplitude contains a logarithmic correction:
T 1−−kd = −TkdL, T 1++kd = −T 1−−kd , where factor L:

L = (Wν)ln(X). (14)

In high orders of perturbation expansion ladder graphs (Fig. 1a) are the
simplest ”maximally singular” graphs. But this is not the only relevant
kind of graphs. If we look at the first graph in Fig. 1b, we notice, that
a new type of ”bubble” appears, which is logarithmically large for small
”total” energy (ω + ω1). The important point is that the relevant region
of integration over ω and ω1 is that of small ω. It is just this region which
gives essential contribution to the logarithmic factor L in any other pair of

G<kkG
A(R)
dd .

It means that the central bubble also gives an additional logarithmic
factor to the total result. In this situation, which is not new in physics, one
should retain in the n - th order of perturbation expansion the most divergent
terms proportional to (Wν)nLn+1. The discussed effect is mathematically
similar to the Mahan edge singularities in the problem of X - ray absorption
spectra in metals [5]. We can say that we deal with a response of Fermi sea to
a ”sudden switching” of the Coulomb potential when the applied bias crosses
the impurity level, though this ”sudden switching” develops not in time but
in voltage changes. Of course, here we use words ”singular” and ”divergent”
not literally, but only to stress the appearance of large logarithmic factor.
The method of summation of these graphs was developed by Dyatlov et al
[6]. It was shown that for a proper treatment of this problem one should
write down integral equations for so-called parquet graphs (Fig. 1b), which
are constructed by successive substitution the simple Coulomb vertex for the
two types of bubbles in perturbation series. These equations represent some
extension of the ordinary Bethe-Salpeter equation and describe multiple
scattering of conduction electrons by the core hole Coulomb potential in the
two ”most singular” channels. The integral equations can be solved with
logarithmic accuracy, as it was done, for example, by Nozieres [7, 8] for
edge singularities in X - ray absorption spectra in metals.

Summing up the most divergent graphs with logarithmic accuracy one
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Figure 2: Current-voltage curves for typical values of dimensionless Coulomb
and kinetic parameters. a) w =Wν < 0, b) w =Wν > 0, γt/γ = 3, εd/γ =
40. Dashed line correspond to W = 0. Experimental STM image of Cr
impurity on InAs (110) surface is shown in the inset for V=0, V=0.5, V=1.5
in sequence.
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obtains the following singular part of the response function [7]:

J(V ) =
γt(1− exp(−2L))

2Wν
. (15)

Then the tunnelling current near the threshold voltage can be expressed
as:

I(V ) =
γt
2Wν

·
D2

(eV − εd)2 + (γt + γ)2

¸Wν

sin (2Wνφ) , (16)

where φ = arcctg(eV−εdγ+γt
). If we consider a deep impurity state in the gap

of the semiconductor (below the Fermi level) and positive tip bias voltage,
then εd < 0, eV < 0. So the phase φ is a step-like function varying from 0 to
π, if the applied bias crosses the threshold eV = εd. Since we retain only the
most logarithmically large terms in the tunnelling current, Eq. (16) is valid
only if |eV − εd| ¿ D. Eq. (16) shows that the tunnelling current has a
peak above the threshold voltage, and then the region of negative differential
conductivity begins. In the absence of Coulomb interaction (W = 0) this
singular part reduces to the usual first order contribution arising from the
first term in Eqs. (7, 8).

It seems also possible to set up an experiment with negative impurity
charge and negative tip voltage close to the value εd+U . In this caseW > 0,
and the Coulomb corrections to the tunnelling amplitude result in power-low
behavior of the tunnelling current with the opposite sign of exponent in Eq.
(16). The tunnelling current is suppressed near the threshold, compared to
the noninteracting case. Current-voltage characteristics obtained for typical
values of parameters are shown in Fig. 2.

Experimental STM/STS investigations of deep impurity levels on semi-
conductor surfaces give evidence of existence of the described effects. Some
STM images demonstrate non-monotonic dependence of tunnelling current
on the applied bias voltage [9]. Recent STS measurements [10] on Mn doped
InAs single crystal surfaces demonstrate I-V characteristics very similar to
those discussed in the present paper. Unusual consequence of Eq. (16) with
negative exponent in power is, that the current itself could be suppressed,
but normalized tunneling conductivity is enhanced. So the renormalization
of the tunneling transfer amplitude by the Coulomb interaction is some new
nontrivial effect which can be observed in special experimental setup.
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