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Abstract

In what follows we deal with a "complex version" of packing of
spheres. Among other things we present a "complex" generalization
of the beautiful "Four Circle Theorem of Descarte" for arbitrary finite
dimension. The "Boul Of Integer Property" (BOIP) of F. Soddy is
extended in various directions. We also present a new approach to
"Mauldon Inclination Theorem". This includes a consideration of the
hyperbolic space as a projection of a "complex sphere" in an higher
dimension. Our methods are mainly geometrical, but in some cases
it is more natural to use the classical "Darboux-Frobenious" theorem,
which is purely algebraic.

1 Introduction

This paper deals with packing of spheres. The starting point of this inves-
tigation goes back to the Ring Lemma of Rodin and Sullivan [1] and, in
particular, to the finding of the sharp constants (for each n) that appear in
this lemma [2—4].

The Four Circle Theorem of Descartes is a cornerstone in finding the
precise value of these constants [3, 4].

Another important ingredient in what follows is the “Bowl of integer
property” (BOIP from now on). This property goes back to F. Soddy [5].
Roughly, it states that if the first four bends (which mean reciprocal of radii)
in the Apollonian packing are integers, then all bends in the Apollonian
packing are integers. This property is the reason why all constants in the
Ring Lemma are reciprocal of integers [3, 4].
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Among other things, we discuss in this paper many ramifications of
BOIP, in particular in connection to reflected Apollonian packing, dual Apol-
lonian packing, etc. We note in passing that a very interersting connection
between BOIP and number theory was established in a recent paper [6].

The research on Apollonian packing is quite broad. For a survey of
various ramifications, the reader is referred to [4].

We recall that the beautiful Four Circle Theorem of Descartes states
that the bends {bj}4j=1 of four mutually disjoint tangent discs satisfyµ

Σ4j=1bj

¶2
= 2Σ4j=1b

2
j . (1.1)

This fundamental theorem was extended to n dimension by Gossett [4] and
later by Mauldon [7] to n+2 spheres in Rn, n ≥ 2, having mutual inclination
γ. The case γ = −1 is the Gosset theorem, i.e., the case of tangency. One
of the ramifications arising out of what follows is to extend the Mauldon
result to n = 1 as well. In other words, we deal with packings on the real
line after we define what we mean by an angle between two segments. In
fact, this opens a window to some invetigation of packing of the real line by
segments.

One of the central topics in our paper is the complex approach. We
define complex inclination between two generalized spheres in the space Cn

and show that it is invariant under a (generalized) Möbius map. We also
take a different approach to the hyperbolic version of Mauldon’s theorem
[7].

In the sequel it will be useful to change the notation of the space Cn to
Gn. This is done in order to emphasize the fact that we replace the usual
distance Cn by a different concept of a “distance”.

Let {aj}nj=1, {bj}nj=1 be complex numbers. We define

d2 = Σnj=1(aj − bj)
2 (1.2)

as the square of the “distance” between ā = (a1, . . . , an) and b̄ = (b1, . . . , bn).
Of course, in general, d2 is not real, and thus d2 hardly may be considered
as a square of a distance. Also, it may happen that d2 = 0 but ā 6= b̄. (For
instance, take ā = (0, 0) and b = (1, i) in G2.) In addition, if d2 6= 0, d may
take two different values. Hence we may say that d(a, b) is not uniquely
defined (but d2(a, b) is). Similarly, we define a “sphere” in Gn as follows.
Let ā = (a1, . . . , an) ∈ Gn, R ∈ C be a complex number. A sphere in Gn is
S = S(a,R) where

Σnj=1(zj − aj)
2 = R2. (1.3)
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The center of the sphere is at ā and its radius is R. As mentioned above,
in case R 6= 0, we get two different values for the radius of the sphere. If
R = 0 and ā = 0, we get

Σnj=1z
2
j = 0. (1.4)

This is not a single point but an entire variety in Gn. This obvious obser-
vation is important when dealing with the concept of Möbius maps in Gn.
Indeed, it follows that the inverse of “infinity” with respect to a sphere is
the variety of the sort described in (1.4). Nevertheless, for every point in
Gn, i.e., not infinity, the inverse is a unique single point. Later on we shall
discuss a space Ĝn ⊃ Gn such that on Ĝn the Möbius map will be 1−1 (see
section 13.3).

It is worth noting that there are two approaches to the investigation of
these matters. One is geometric, taken by most researchers. A very good
representative of this approach is Coxeter [8]. Another approach is algebraic.
This approach was taken a long time ago by Darboux-Frobenious [9]. In the
present paper we mainly take the geometric approach but in some cases we
shall use the algebraic approach as well.

2 The space Gn

2.1 Definition of Gn

Let aj ∈ C, 1 ≤ j ≤ n, ā = (a1, . . . , an). We then define the space Gn

as the space Cn of all vectors ā, but with the “distance” d, where d̄2 =
(a − b)2 = d2(a, b) = Σnj=1(aj − bj)

2, ā = (a1, . . . , an), b̄ = (b1, . . . , bn).
(Note that (a − b)2 = (a − b, a − b) is the scalar product and ā is replaced
by a. When there is no danger of confusion, we occasionally shall use this
notation. Obviously d(a, b) = 0 does not imply a = b. Also, there is no
meaning to the triangle rule. Thus certainly d may be hardly regarded as
a distance in the usual sense. Moreover, in case d(a, b) = 0, d(b, c) = 0 it
does not follow in general that d(a, c) = 0. (Take as an example the space
G2, a = (0, 0), b = (i, 1), c = (0, 2).) In other words, the property of having
a distance zero is not transitive. (Of course, in G1, z2 = 0 implies that
z = 0.) As already pointed out above, we shall introduce at a later stage
an extension Ĝn = Gn ∪M , where M is a colleciton of points, all of them
inverse to points satisfying z2 = 0. This process of extension will be done
in such a way as to assure the 1 − 1 property of Möbius maps on Ĝn and
to keep the property that inverse points on Ĝn will be mapped onto inverse
points under a generalized Möbius map.
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2.2 Spheres and planes in Gn

Let ā = (a1, . . . , an) ∈ Gn, R ∈ C. A sphere in Gn is

S = {z,Σ(zj − aj)
2 = R2} = S(a,R). (2.1)

Note that it may occur that R = 0 and we then get for S = S(a, 0) :
S = {z,Σnj=1(zj − aj)

2 = 0}. Of course, S is an entire variety and not the
single point ā = (a1, . . . , an). If R = 0, ā = 0, we get

Σnj=1z
2
j = 0. (2.2)

These are the points on the sphere S = S(0̄, 0). As mentioned above, in
what follows ā is replaced by a when there is no danger of confusion.

Similarly, we now define a plane in Gn.
Let {αj}nj=1 ∈ C, β ∈ C, ᾱ = (α1, . . . , αn); then P = P (ᾱ, β) is a plane

in Gn where
P =

©
z,Σnj=1zjαj = (z, α) = β

ª
. (2.3)

We differentiate between two cases: α2 = 0 and α2 6= 0.
If α2 = 0 but ᾱ 6= 0, the situation in some cases may cause confusion.

Therefore, we usually only deal with the case α2 6= 0. In the sequel, when
we speak about a plane in Gn, we mean only the case α2 6= 0, unless we
specifically say that the case α2 = 0 is under consideration.

Given a plane, it may occur that β = 0. This means that the plane
“passes” through the origin 0̄ = (0, . . . , 0) in Gn. If this is not so, we may
write the equation of the given plane in a more convenient form, namely,
in a “normal form”. Indeed, if P = {(z, α) = β, α2 6= 0, β 6= 0}, then
(z, α β

α2 ) = β β
α2 =

β2

α2 , and putting γ = β
α2α, we get (z, γ) = γ2. Note that

both conditions α2 6= 0, β 6= 0, have been used. Indeed, we multiply by the
factor β

α2
. Since it is not zero, it may be applied only for β 6= 0. Since we

divide by α2, it is applicable only for α2 6= 0.
The normal form is more convenient in proving some of our statements,

but we have to keep in mind that the case of a plane passing through
the origin is not covered and has to be handled separately. Geometrically
(z, γ) = γ2 or (z − γ, γ) = 0 means that the vector γ is perpendicular to
z − γ. As in the real case, we may say that γ measures the distance of the
origin from the given plane.

2.3 Orthogonal transformations in Gn

Let T = (tij)
n
i,j=1 be an n × n orthogonal complex matrix. We define

an orthogonal transformation in Gn by w = Tz for z̄ = (z1, . . . , zn), w̄ =
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(w1, . . . , wn).

Lemma 2.1. Let T be a given orthogonal transformation in Gn. Then

(a, b) = (Ta, Tb) (2.4)

for any a, b ∈ Gn.

Proof. First note that for a = b we get from a2 = (a, b) = (Ta, Tb) =
(Ta)2. We may say that we have an isometry. To prove (2.4) we write
T = (tij)

n
i,j=1 and we get

(Ta, Tb) = Σni=1(Ta)i(Tb)i = Σni=1
¡
Σnj=1tijaj

¢¡
Σnk=1tikak

¢
= Σnj,k=1

¡
Σni=1tijtik

¢
(aj , bk)

= Σnj,k=1δjk(aj , bk) = (a, b).

Lemma 2.2. An orthogonal transformation T preserves spheres in Gn and
the radius is not changed.

Proof. Let S = {z, (z − a)2 = R2} be a sphere in Gn. Let T = (tij)ni,j=1,
M = T−1 = (mij)

n
i,j=1. Since w = Tz we have z =Mw.

Let b = Ta or a = Mb. Then, by Lemma 2.1, R2 = (z − a)2 = (z −
a, z − a) = z2 + a2 − 2(z, a) = (Mw,Mw) + (Mb,Mb) − 2(Mb,Mw) =
w2 + b2 − 2(b, w) = (w − b)2. This ends the proof of Lemma 2.2. Note that
the center b is Ta, i.e.,. the image of the center a by T .

Lemma 2.3. An orthogonal transformation T preserves planes in Gn.

Proof. Let (α, z) = β be the equation of P in Gn. Let T = (tij)
n
i,j=1,

M = T−1 = (mij)
n
ij=1. Then for α = Mγ,w = Tz, z = Mw, we get, by

Lemma 2.1, β = (α, z) = (Mγ,Mw) = (γ,w). Hence the image of P is
(γ,w) = β.

In adddition to orthogonal transformations it will be useful to consider
translations, i.e., w = z + b. Obviously translations preserve spheres and
planes as well.

Indeed, (α, z) = β and z = w − b implies (α,w − b) = β or (α,w) =
β + (α, b). Similarly, (z − α)2 = R2 is transformed to (w − b− α)2 = R2.

2.4 Inverse points in Gn

Let S = S(a,R) =
n
z,Σnj=1(zj − aj)

2 = R2
o
be a given sphere in Gn.

Assume further that R 6= 0. Let c = (c1, . . . , cn) ∈ Gn. Assume that
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(c− a)2 6= 0. then we define d to be the inverse point of c with respect to S
if and only if

d− a = λ(c− a), λ =
R2

(c− a)2
(2.5)

we have (d− a)2(c− a)2 = λ2(c− a)4 = R4

(c−a)4 (c− a)4 = R4.
Note that if d is the inverse point of c, then c is the inverse point of d.

Indeed,

c− a =
1

λ
(d− a) =

(c− a)2

R2
(d− a) =

(d− a)

R2
R4

(d− a)2
=

R2

(d− a)2
(d− a).

We say that c and d are inverse points of each other with respect to S.
In the particular case of S =

n
z,Σnj=1z

2
j = 1

o
, (i.e., S is the unit sphere

in Gn) we get from (2.5),

d =
c

c2
. (2.5’)

Next, we deal with a plane in Gn. Let P = {z, (α, z) = β} for α =
(α1, . . . , αn),
β ∈ C. We assume further that P is a “proper” plane, i.e., α2 6= 0. Moti-
vated by the real case, it is natural to consider b = (b1, . . . , bn), as the in-
verse point of ā = (a1, . . . , an) with respect to P , provided a+b

2 ∈ P , and also
b−a = λα for some parameter λ. Hence (α, a+b2 ) = β or (a, α)+(b, α) = 2β.
Also b − a = λα implies (b, α) − (a, α) = λα2. Thus 2(a, α) = 2β − λα2 or
λ = 2β−2(a,α)

α2
and we are led to the definition:

Given a plane P = {z, (α, z) = β} in Gn and ā ∈ Gn, then the inverse point

of ā with respect to P is defined as

b̄ = ā+

·
2β − 2(ā, α)

α2

¸
ᾱ. (2.6)

If P is given in its normal form P = {z, (z, γ) = γ2}, then γ = α, γ2 = β
and

b̄ = ā+ 2γ
¡
1− (a, γ)

γ2
¢

(2.6’)

2.5 Preservation of inverse points under translation andmag-
nification

Lemma 2.4. Translations and magnification preserve inverse points.
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Proof. Let w̄ = z̄+β̄, w = (w1, . . . , wn), z = (z1, . . . , zn), β = (β1, . . . , βn),
S = {z, (z−a)2 = R2} a given sphere in Gn. Let c, d be inverse with respect
to S. If C,D are the images of c, d respectively, then C = c̄+ β̄, D̄ = d̄+ β̄,
D̄− C̄ = d̄− c̄. Also S is mapped onto onto S1 = {w, (w−A)2 = R2} where
A = a+ β (as (z − a)2 = (w− β − a)2 = R2). D−A = (d+ β)− (a+ β) =

d − a = λ(c − a) = λ(C − A) where λ = R2

(c−a)2 =
R2

(C−A)2 . Thus D is the
inverse point of C with respect to S1.

If w = µz, µ 6= 0 is a given magnification, then the proof is very similar
and we omit the simple details.

If we consider a plane P = {z, (z, α) = β} and a translation or magnifi-
cation, the discussion is also very simple and details are again omitted.

Next we prove

Lemma 2.5. Orthogonal transformations preserve inverse points.

Proof. Let w = Tz, z =Mw for T = (tij)ni,j=1, T an orthogonal matrix.
We first consider a sphere S = S(a,R), S = {z, (z − a)2 = R2}. Let c, d be
inverse points with respect to S. Then d − a = R2

(c−a)2 (c − a). Applying T

to this relation, we get Td−Ta = R2

(c−a)2 (Tc−Ta) and this means D−A =

R2

(C−A)2 (C − A) where A,C,D are the images of a, c, d respectively. To end

the proof we use the isometry (c− a)2 = (Tc− Ta)2 = (C −A)2.
The proof for a plane P = {z, (z, α) = β} is very similar and details are

omitted.

2.6 Transformation of spheres and planes under inversion

Let S = {z, (z − a)2 = R2} be a given sphere. Our aim is to find its inver-
sion (we note that sometimes it is called “reflection”) with respect to another
sphere
S1, S1 = {z, (z−c)2 = ρ2} we have (z−a)2 = ((z−c)+(c−a))2 = (z−c)2+
(c− a)2 + 2(z − c)(c− a) = R2. Hence for τ2 = R2 − (c− a)2

(z − c)2 + 2(z − c)(c− a) = R2 − (c− a)2 = τ2 (2.7)

we separate between two cases, τ 6= 0, τ = 0.
First consider the case τ 6= 0.
Let w be the inverse point of z with respect to S1. Then z − c =

ρ2

(w−c)2 (w−c), putting this in (2.7) ρ4

(w−c)2 +
2(w−c)
(w−c)2 ρ

2(c−a) = τ2. Thus (w−
c)2 = ρ4+2(c−a)(w−c)ρ2

τ2
or
¡
w−c− (c−a)ρ2

τ2

¢2
= ρ4

τ2
+ (c−a)2ρ4

τ4
= ρ4 [τ

2+(c−a)2]
τ4

=
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ρ4

τ4
R2 =

¡ρ2R
τ2

¢2. Hence the image of S with this transformation (i.e., inver-
sion with respect to S1)

(w−A)2 = µ2, A = c+
(c− a)ρ2

τ2
, µ = ±ρ2R

τ2
= ± ρ2R

R2 − (c− a)2
. (2.8)

We next consider the other case τ2 = R2 − (c− a)2 = 0. From (2.7) we
see that z = c is a point of S in this case. In other words, we may say that S
“passes” through the center of S1 if τ = 0. Thus it is expected that the image
of S will be a plane in this case. Indeed, from (2.7) (z−c)2+2(z−c)(c−a) = 0
and putting z − c = ρ2

(w−c)2 (w − c), we get ρ4

(w−c)2 +
2ρ2

(w−c)2 (w − c)(c − a) =

τ2 = 0. Thus, (w − c)(c− a) = −ρ2
2 or

(w, c− a) = c(c− a)− ρ2

2
. (2.9)

For the particular case c = 0, ρ = 1, i.e., S1 is the unit sphere, we get

(w −A)2 = µ2, A =
a

a2 −R2
, µ = ± R

a2 −R2
(2.8’)

(w, a) =
1

2
. (2.9’)

(Note that since a2 6= 0, we can rewrite (2.90) in the normal form, ¡w, a
2a2

¢
=

1
(2a)2 .)

2.7 Invariance property of inverse points

As in the real case, we expect that the property of two points being inverse
to each other with respect to a given sphere or a plane is invariant under an
inversion with respect to a given sphere or a plane.

(In the future we will use the word “reflection” instead of “inversion”.)
As in the real case, it is convenient to talk about a generalized sphere. By

this we mean that we have either a sphere or a plane. Generalized spheres
will be denoted by Σ,Σ0, etc. Spheres will be denoted, as before, by S, and
planes by P .

Theorem 2.1. Let Σ be a generalized sphere in Gn. Let Σ0 be another
generalized sphere in Gn. Denote by Σ0 the inverse of Σ with respect to Σ0.

If c, d denote the inverse points with respect to Σ, and C,D denote the
images under this transformation, then C,D are inverse points with respect
to the image Σ0 of Σ.

12



Proof. The complete proof of the above theorem will be given at a later
stage, after we define properly the space Ĝn. For the time being we confine
ourselves to “non zero” points. More specifically, we do not divide by zero.
This means that in the following, when we consider c

c2
, we assume that

c2 6= 0. Similarly, when we consider c−a
(c−a)2 , we assume that (c − a)2 6= 0,

and so on. After defining the space Ĝn, these missing cases will be proved
as well.

It is possible to prove the assertion by an analytic continuation from the
real case, but we prefer to give a direct independent proof.

There are various cases to consider.
Σ may be a sphere or a plane. The same is true for Σ0. In fact, there

are six cases to check;

(a) S − S − S

(b) S − S − P

(c) P − S − S

(d) P − S − P

(e) S − P − S

(f) P − P − P

(The above notation means the following: say for the case (d) we reflect
a plane P with respect to a sphere S to get another plane P.)

Note that if Σ0 is P , we get only the two cases (e) and (f). This is due to
the fact that inversion with respect to a plane preserves planes and spheres
and cannot, like in the case when Σ0 is S, transform a plane into a sphere.

Also note that (b) and (c) are in fact the same case because of the duality
property of inverse points.

In addition, the case (d) is trivial.
Indeed, it is enough to consider the unit sphere S = {z,Σnj=1z2j = 1}.

If P = {z, (z, γ) = β}, then if we are in the case (d), necessarily we must
have β = 0. Thus z = w

w2 leads to (w, γ) = 0, and the image of P is P itself.
Thus the tranformation simply reverses c and d.

Hence, it remains to check (a), (b), (e) and (f). We will check only (a)
and (f), since the cases (b) and (e) are very similar. For the proof of (a)
consider S = {z, (z − a)2 = R2}, a given sphere in Gn. We may assume
that we reflect S in S1 = {z, z2 = 1}, the unit sphere in Gn. There is
no loss of generality in doing so, as we have shown that translation and
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magnification preserve inverse points. Since we are interested in case (a),
we assume a2 6= R2. By (2.80), we know that the image of S after inversion
in S1 is the sphere Ŝ = {w, (w−A)2 = ρ2} for A = a

a2−R2 and ρ =
R

a2−R2 . If
c, d are the inverse points with respect to S, we have to show that C = c

c2
,

D = d
d2
are inverse points with respect to Ŝ, or

D −A =
ρ2

(C −A)2
(C −A), D =

d

d2
, C =

c

c2
, (2.10)

A =
a

a2 −R2
, ρ =

R

a2 −R2
.

We put the notation

λ =
R2

(c− a)2
, µ =

ρ2

(C −A)2
. (2.11)

Thus we have to check

C −A =
1

µ
(D −A) =

(C −A)2

ρ2
(D −A). (2.10’)

From (2.11)

1

λ
=

c2 + a2 − 2(a, c)
R2

, 2(a, c) = c2 + a2 − R2

λ
. (2.12)

Similarly, 1µ =
C2+A2−2(A,C)

ρ2
. Using C2 =

¡
c
c2

¢2
= 1

c2
, A2 =

¡
a

a2−R2
¢2,

2(A,C) = 2
¡

a
a2−R2 ,

c
c2

¢
= 2(a,c)

c2(a2−R2) we get

1

µ
=

1

ρ2

·
1

c2
+

a2

(a2 −R2)2
− 2(a, c)

c2(a2 −R2)

¸
=

1

ρ2c2

·
(a2 −R2)2 + a2c2 − 2(a, c)(a2 −R2)

(a2 −R2)2

¸
=

1

ρ2c2(a2 −R2)2

·
a4 +R4 − 2a2R2 + a2c2 − (c2 + a2 − R2

λ
)(a2 −R2)

¸
where we have used (2.12).

Using ρ2(a2 −R2)2 = R2 we get after simple manipulations

1

µ
= 1 + τ , τ =

(a2 −R2)2

c2
¡1
λ
− 1¢. (2.13)
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From (2.100) and (2.13) it remains to show

C −A = (1 + τ)(D −A) or C + τA = (1 + τ)D,

where τA = (a2−R2)
c2

¡
1
λ−1

¢
a

a2−R2 =
1
c2

¡
1
λ−1

¢
a. Hence C+τA = c

c2 +
1
c2

¡
1
λ−

1
¢
a

= 1
c2

¡
c + ( 1λ − 1)a

¢
= 1

c2

¡λc+(1−λ)a
λ

¢
= 1

λc2
d. (The last step follows from

d− a = λ(c− a) as c, d are inverse points with respect to S.) Thus, putting
C+τA = d̄

λc2
in the above, it remains to check (using D = d̄

d2
and cancelling

d̄) that 1
λc2

= 1+τ
d2
, or

d2 = (1 + τ)λc2. (2.14)

But we have seen that d = λc+ (1− λ)a. Hence, from (2.12)

d2 = λ2c2+(1−λ)2a2+2λ(1−λ)(a, c) = λ2c2+(1−λ)2a2+λ(1−λ)(c2+a2−R
2

λ
).

Also from (2.13) (1 + τ)λc2 = λc2 + λτc2 = λc2 + (a2 −R2)(1− λ). Hence
(2.14) is reduced to checking whether λ2c2+(1−λ)2a2+λ(1−λ)¡c2+a2−R2

λ

¢
= λc2+(a2−R2)(1−λ), which is an identity as can easily be varified. Thus
(2.14) is confirmed and this ends the proof of case (a).

In order to check (f), we consider the planes P = {z, (z, γ) = β} and
P0 = {z, (z, η) = δ}. We reflect P in P0. Also, let c, d be inverse with
respect to P , i.e.,

d̄ = c̄+ 2γ̄
β − (γ̄, c̄)

γ2
= c+ λγ̄ for λ = 2

β − (γ, c)
γ2

. (2.15)

Reflecting P in P0, we get z = w +
h
2δ−2(w,η)

η2

i
η̄. Hence β = (z, γ) =

(w, γ) + 2δ−2(w,η)
η2 (η, γ). Thus the equation after reflecting

(w̄, γ̄1) = β1, where γ̄1 = γ̄ − 2(γ, η) η̄
η2
, β1 = β − 2δ(η, γ)

η2
. (2.16)

Denote by C,D the image of c, d respectively. Then

C̄ = c̄+

·
2δ − 2(c, η)

η2

¸
η̄, D̄ = d̄+

·
2δ − 2(d, η)

η2

¸
η̄. (2.17)

We have from (2.17)

D̄ − C̄ = d̄− c̄+
2(c, η)

η2
η̄ − 2(d, η)

η2
η̄.
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>From (2.15)

D̄ − C̄ = λγ̄ − 2η̄
η2
(d̄− c̄, η̄) = λγ̄ − 2η̄

η2
(λγ̄, η̄) = λ

¡
γ̄ − 2η̄

η2
(γ̄, η̄)

¢
.

>From (2.16) we conclude

D̄ − C̄ = λγ̄1. (2.18)

Our aim is to show that C̄, D̄ are inverse points with respect to the image
(w̄, γ̄1) = β1. We thus have to show that

D̄ − C̄ =
2[β1 − (γ̄1, C̄)]

2γ21
γ̄1. (2.19)

Comparing (2.18) and (2.19), we have to confirm

λ =
2[β1 − (C̄, γ̄)]

γ21
. (2.20)

But γ21 = γ2, as follows at once from (2.16). Also λ = 2[β − (γ, c)] 1γ2 by
(2.15). Hence (2.20) is reduced to β − β1 = (c, γ)− (C, γ1). By (2.16) and
(2.17) this means

2δ(η, γ)

η2
= (c̄, γ̄)−

µ
c̄+

2δ − 2(c, η)
η2

η̄, γ̄ − 2(γ, η)η̄
η2

¶
= (c, γ)−

·
(c, γ)− 2(γ, η)(c, η)

η2
+
2δ(η, γ)

η2

−4δ(γ, η)η
2

η4
− 2(c, η)(η, γ)

η2
+
4(c, η)(η, γ)η2

η4

¸
,

which is easily confirmed.

2.8 Points with mutually equal distance in Gn

In this section we develop some material needed for a later stage. While
the information we deduce is fairly obvious in Rn, it seems that in Gn it
demands some care.

Lemma 2.6. Let {āj}nj=1 be n points in Gn, such that aj 6= 0, 1 ≤ j ≤ n.
Also let

(aj − ak)
2 = λ, j 6= k, 1 ≤ j, k ≤ n, λ 6= 0. (2.21)

Then
{b̄j}nj=1, b̄j = āj − ā1, 2 ≤ j ≤ n (2.22)

are n− 1 linearly independent vectors.
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Proof. We have for j 6= k, 2 ≤ j, k ≤ n, (bj − bk)
2 = (aj − ak)

2 = λ =
b2j = b2k. Hence, λ = b2j + b2k − 2(bj , bk) = b2j . Thus

b2k = 2(bj , bk) j 6= k, 2 ≤ j, k ≤ n. (2.23)

Denote
(bj , bk) = X, b2k = 2X = λ, j 6= k, 2 ≤ j, k ≤ n. (2.24)

Assume now that, in contrast to the assertion of the lemma, we haveΣnj=2λj b̄j =
0 (where not all λj are zero). Then multiplying by bk we get for 2 ≤ k ≤ n
the system

λ2(b2, b2) + λ3(b3, b2) + · · ·+ λn(bn, b2) = 0

λ2(b2, b3) + λ3(b3, b3) + · · ·+ λn(bn, b3) = 0

...
...

λ2(b2, bn) + λ3(b3, bn) + · · ·+ λn(bn, bn) = 0.

Hence from (2.24)

λ2(2X) + λ3X + · · · + λnX = 0

λ2X + λ3(2X) + · · · + λnX = 0

...
...

λ2X + · · · + λn(2X) = 0.

Thus the determinant is ¯̄̄̄
¯̄̄̄
¯̄̄
2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

1 1 · · · 2

¯̄̄̄
¯̄̄̄
¯̄̄

But this determinant is easily shown to be different from zero for each n.
Hence we derive a contradiction to the assumption of dependence.

Corollary 2.1. The set {b̄n, . . . , b̄n} defined above may be orthonormalized.
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Indeed, let

c2 = b2

c3 = b2 −2b3
...

...

ck = b2 + · · ·+ bk−1 − (k − 1)bk
...

...
...

cn = b2 + · · ·+ bn−1 − (n− 1)bn.

We first show that this system is orthogonal. Indeed, (c3, c2) = (b2, b2)−
2(b3, b2) = 2X − 2X = 0, as follows from (2.21). More generally, for j < k,

(ck, bj) =
¡
Σk−12 bc − (k − 1)bk, bj

¢
= Σk−1c=2 (bc, bj)− (k − 1)(bk, bj)
= (k − 3)X + 2X − (k − 1)X
= 0.

We leave it to the reader to show that (cj , cj) 6= 0. Hence, multiplying
by suitable constants, we can produce an orthonormal set.

We now have

Lemma 2.7. Given the set A = {0̄, b̄2, . . . , b̄n} in Gn for the {bj}n2 as above,
there exists an orthogonal matrix T = (tij)ni,j=1 such that applying T to the
set A we get a new set B = {0̄, d̄1, . . . , d̄n−1} where the nth coordinate of
each {dj}n−1j=1 is zero.

Proof. Our aim is to find an orthogonal T such that

 t11 t12 · · · t1n
...

...
tn1 · · · tnn




0 b12 b13 · · · b1n−1
0 b22 b23 · · ·
...

...
...

...
0 bn2 bn3 · · · bnn−1

 =


0 · · ·
0 · · ·
...

...
0 · · · 0.


For (t11, . . . , t1n) we take c̄2, for (t21 · · · t2n) we take c3 and so on, where the
c̄k are defined as in Corollary 2.1.

Hence, the first n−1 rows of T are c̄2, c̄3, . . . , c̄n. Our aim is now to show
that it is possible to “complete” the last row and form an orthogonal matrix

18



T . Indeed, for the orthonormal system c̄2 . . . , c̄n we create the following
linear system of equations:

x1c12 + x2c22 + x3c32 + · · · + xncn2 = 0

x1c13 + x2c23 + · · · + xncn3 = 0
...

...

x1c1n + x2c2n + · · · + xncnn = 0.

(2.25)

This system, as a linear homogeneous system of n − 1 equations with n
unknowns, has a non trivial solution x̄ = (x1, . . . , xn). Hence the vector
x̄ is orthogonal to c̄2, . . . , c̄n. We may assume that (x̄, x̄) 6= 0. Indeed, in
the case (x̄, x̄) = 0 it follows that x̄ is orthogonal to {c̄2, . . . , c̄n, x̄}, i.e., to
a set of n vectors. Since x̄ by construction does not depend on {c̄k}n2 , it
follows that x̄ must be zero in contrast to the above. Thus, by an additional
normalization, the last missing row of T is easily constructed. Since the last
row, Tn, is now orthogonal to the set {c̄2, . . . , c̄n}, we have the same property
of orthogonality to {b̄n, . . . , b̄n}. Hence the last row of the resulting matrix
after multiplication is indeed composed of zeros as wanted. This ends the
proof of the lemma.

Based on the above, we can now formulate the main result in this section
that will be needed later on.

Theorem 2.2. Let {ā1, ān, . . . , ān} be a set of n nonzero points in Gn.
Assume further that d2(aj , ak) = (aj − ak)

2 = λ for j 6= k, 1 ≤ j, k ≤ n,
λ 6= 0 (i.e., all mutual distances are the same). Then, by a combination
of orthogonal transformations and translations plus magnifications, we can
transform the given set {aj}nj=1 to the basis {(0, . . . , 1, 0, . . . )

j−th
}nj=1

Proof. We first translate the set by −ā1 to create
(ā1, ān, . . . , ān) → (0, ā2 − ā1, . . . , ān − ā1). Using Lemma 2.6 we get that
the set {b̄2 = ā2 − ā1, b̄3 = ā3 − ā1, . . . , b̄n = ān − ā1} is independent. Using
Lemma 2.7 we deduce that the nth coordinate of all vectors T b̄i, 2 ≤ j ≤ n
will be zero for suitable orthogonal T . Also, using (Tbk−Tbj)

2 = (bk− bj)
2

we conclude that the given property of equal distances remains valid after
applying T . Hence, without loss of generality, we may assume that the given
vectors bj = aj − a1, 2 ≤ j ≤ n have all nth coordinate zero. As in Lemma
2.6 we have:

b2k = 2(bk, bj), j 6= k, 2 ≤ j, k ≤ n. (2.26)

Denoting b̄ = 1
nΣ

n
j=2b̄j =

1
nΣ

n
j=1b̄j (for b̄1 = ā1 − ā1 = 0) we have

(b− bj)
2 = µ, µ 6= 0, 1 ≤ j ≤ n for some µ. (2.27)
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Indeed, for j = 1 we get

(b− b1)
2 = b2 =

1

n2
¡
Σnj=2bj

¢2
=

2(n− 1)X + [(n− 1)2 − (n− 1)]X
n2

= X
¡n− 1

n

¢
(where we recall that X = (bj , bk), 2X = (bj , bj).)

For j ≥ 2 we claim that:

b2j =
2

n
Σnc=2(bj , bc) = 2(b̄c, b̄). (2.28)

Indeed, 2X = 2
n [(n− 2)X +2X] where, again, we use (bj , bc) = X for j 6= c,

(bj , bj) = 2X. Hence, from (2.28) we have (b − bj)
2 = b2 + b2j − 2(b, bj) =

b2 =
¡
n−1
n

¢
X. Thus (2.27) is confirmed and, moreover, µ =

¡
n−1
n

¢
X.

We next use another translation, namely, we move b̄ to zero. So let
zj = bj − b, 1 ≤ j ≤ n. We get from (2.27),

z2j = µ, 1 ≤ j ≤ n. (2.29)

Now we put the notation

zj = (zj1zj2 · · · zjn−1, 0), 1 ≤ j ≤ n.

Also, let
ᾱ = (0, . . . , 0, αn).

Our aim now is to find αn such that

(zj − α, zk − α) = 0, j 6= k, 1 ≤ k, j ≤ n. (2.30)

In other words we claim that for some value of αn all vectors {zj − α}nj=1
are mutually orthogonal. In order to show the existence of such an α, we
have first to show some preliminary facts.

First note that
(zj , α) = 0, 1 ≤ j ≤ n. (2.31)

Indeed, (zj , α) = Σn−1k=1zjk · 0 + 0 · αn = 0. Next, observe that
(zj , zk) = const for each j 6= k, 1 ≤ j, k ≤ n. (2.32)

Indeed, (zj − zk)
2 = z2j + z2k − 2(zj , zk). Since by construction (zj − zk)

2 are
all equal for j 6= k, (2.32) follows from (2.29). We are now ready to show
the existence of αn.
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For j 6= k,

(zj − α, zk − α) = (zj , zk)− (zk, α)− (zj , α) + α2.

But (zk, α) = (zj , α) = 0 by construction. Hence, denoting the constant
appearing in (2.32) by τ , we have (zj − α)2 = τ + α2. Now taking α2n = α2

to satisfy α2 + τ = 0, we get that (2.30) is valid.
In contrast to the real case, we have to be careful with the possibility

that the length of zj−α might be zero or, in other words, that (zj−α)2 = 0.
We now show that this is not the case. Indeed, by (2.29) and (2.31)

(zj − α)2 = z2j + α2 − 2(zj , α) = z2j + α2 = µ+ α2.

If (zj − α)2 = 0, it follows that µ = z2j = −α2 for each j. But we have seen
above that the constant value τ of (zj , zk) satisfies τ = (zj , zk) = −α2, j 6= k.
Hence

(zj , zk) = −α2 = z2j j 6= k, 1 ≤ j, k ≤ n. (2.33)

Now, by our construction, (zj − zk)
2 6= 0. Thus

(zj − zk)
2 = z2j + z2k − 2(zj , zk) = [z2j − (zj , zk)] + [z2k − (zj , zk)] 6= 0,

in contradiction to (2.33).
We have, by the above discussion,

µ+ α2 = (zj − α)2 6= 0, 1 ≤ j ≤ n. (2.34)

Using (2.34), we now may assume that (zj−α)2 = 1, since otherwise we can
multiply by a suitable factor to get it. Now making the additional translation
w = z − α, wj = zj − α, 1 ≤ j ≤ n, we derive the set {w1, w2, . . . , wn}
which is an orthonormal set by the above and by (2.30).

Summing up what we have up to now, we see that we can get by a se-
quence of admissible transformations (i.e., orthogonal, translation, magnifi-
cation) from
our original set, the set {w1, w2, . . . , wn} which is orthonormal. Denoting
wj = (w1j , w2j , . . . , wnj), 1 ≤ j ≤ n, we want to show that by additional or-
thogonal transformation we can arrive at the set {ej}n1 = {(0, . . . , 1, 0, . . .

j−th
}n1 ,

i.e., we want to find T = (tij)
n
i,j=1 such that

I =


1 0
1
. . .

0 n

 =

t11 t12 · · · t1n
...

...
tn1 · · · tnn



w11 w21 · · · wn1

w21 w22
...

...
...

wn1 wn2 · · · wnn

 = TW.
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Since the matrix W is orthogonal, as the set {w̄j}nj=1 is orthonormal, it
follows at once that T =W−1 ◦ I =W−1 is orthogonal.

This ends the proof of Theorem 2.2.

3 Möbius transformation in Gn and inclination

By aMöbius transformation inGn we mean a chain of inversions (reflections)
with respect to (generalized) spheres, translations and magnifications.

Remark. In [9] it is shown that there is a clear connection between
Möbius maps and orthogonal transformations. Also a Möbius transforma-
tion can be written as a chain of reflections alone. In addition, there is a
classical treatment of further connection between isometry and orthogonal
transformation. All this may be easily generalized to Gn. We omit the
details, mainly because we will not need any of these later on.

3.1 Inclination in Gn

Our next aim is to define the concept of inclination.
Given two spheres in Gn, S = {z, (z−a)2 = R2}, S1 = {z, (z−b)2 = ρ2},

the inclination λ between S and S1 is defined (for R 6= 0, ρ 6= 0) as

λ =
R2 + ρ2 − (a− b)2

Rρ
= λ(S, S1). (3.1)

Note that in order to make the inclination λ uniquely defined, we must
choose a definite value of R and ρ.

Given two planes in Gn, P = {z, (z, γ) = β}, P1 = {z, (z, η) = δ}, we
define the inclination λ between P and P1 as

λ = λ(P,P1) =
(γ̄, η̄)

γη
. (3.2)

Note that as usual we assume η2 6= 0, γ2 6= 0, i.e., we have “proper”
planes. Also, again as in the above case, in order to make λ uniquely de-
termined, we have to choose definite values of γ, η (otherwise, since γ =q
Σuj=1γ

2
j , η =

q
Σuj=1η

2
j , the inclination is determined only up to a sign,

and can get two possible values).
Given a plane P = {z, (z, γ) = β} and a sphere S = {z, (z − a)2 = R},

we define the inclination λ between P and S as

λ = λ(P, S) =
(a, γ)− β

γR
. (3.3)

22



(Again we assume that γ,R are not zero.) Later on we will show that
inclination is invariant under Möbius transsformation. In section 2.5 we
have shown that a generalized sphere is transformed to a generalized sphere
under a Möbius map. In order to show the invariance, we need to fix the
sign of γ (or R) after inversion. We now clarify what we mean by that.

We take as an example the sphere S = {z, (z − a)2 = R2} in Gn. We
reflect S in the unit sphere S0 = {z, z2 = 1}. Let a2 6= R2. We have seen
in section 2.5 that the result in the image plane is (w − A)2 = µ2, where
µ = ± R

a2−R2 .
We state as follows: if for the original sphere S the choice of the radius

was one of the two values that we call R, then the radius of the image sphere
is R

a2−R2 . The motivation for this choice will be clear when we later motivate
our discussion by looking at the situation in the classical real case. Similarly,
given a plane P = {z, (z, γ) = γ2}, γ2 6= 0, with a specific choice of one of
the two values of γ =

q
Σuj=1γ

2
j , we get after reflection with respect to the

unit sphere, the image sphere γ2 = (z, γ) =
¡
w
w2
, γ
¢
or
¡
w, γ

2γ2

¢
=
¡
1
2γ

¢2.
Again we state that the image sphere has the radius 1

2γ and not − 1
2γ .

3.2 The real case

Our aim in this section is to recall the concept of inclination in the real case,
and to analyze it geometrically.

We start our discussion with two intersecting spheres in Rn. Hence, let
S = {x̄, (x̄− ā)2 = R2}
S1 = {x̄, (x̄− b̄)2 = ρ2}
a = (x1, . . . , xn), b = (y1 . . . , yn)
d2(a, b) = Σnj=1(xj − yj)

2 = (a− b)2.

Figure 1: Inclination: the real case.
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We see that λ = λ(S, Sn) =
ρ2+R2−(a−b)2

2ρR is cosφ, where φ is the angle of
intersection between the two spheres. It is well known that λ = λ(S, S1) =
cosφ is invariant under conformal tranformation, and in particular under
a Möbius map. In fact, this invariant property is valid even in the non-
intersection case.

We now point out the fact that even in the real case R 6= 0 may get two
possible values, namely, R may be positive or negative. R > 0 means that
the sphere bounds a finite ball in Rn, R < 0 means that the sphere (in R̂n)
bounds the complement of a ball in R̂n, i.e., containing the point of infinity.
If R > 0, ρ < 0, λ(S, S1) changes its sign (see Figure 2).

We next want to give the geometrical interpretation of (3.2) and (3.3) in
the real case. We start with (3.2). It is easy to see that (γ̄,η̄)γη is cosϕ for ϕ
the angle of intersection between the two planes, or what is the same, the
angle between the two perpendicular vectors to P,P1, i.e., γ, η respectively.

ρ

ρ<0 R>0

R

Figure 2: Two possible values for radii.

To explain (3.3) we start with two spheres and let one of these spheres
change continuously to a plane. Let S be the sphere S = {z, (z− a)2 = R2}
and P = {z, (z, γ) = β} be a plane in Rn. We denote the distance between
a and P by h (see Figure 3).
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h
d(a,b)

ρ

R

a

b

P

S

(  ,γ)=βz

(z-a)²=R²

Figure 3: Convergence to a limit case.

We have for the tangent sphere S1 to the plane P : S1 = {z, (z−b)2 = ρ2}

λ(S, S1) =
R2 + ρ2 − (b− a)2

2Rρ
. (3.4)

In the particular case of the situation described in Figure 3 we have ρ >
0, R > 0. Also, d2 = d2(a, b) = (ρ+ h)2 = (b− a)2. Hence from (3.4):

λ(S, S1) =
R2 + ρ2 − (ρ+ h)2

2ρR
=

R2 − h2 − 2ρh
2ρR

.

We now let ρ→∞ continuously. Obviously S1 converges to P . In the limit
we get λ(S, S1) → − h

R . Our aim is now to show that this last expression,
i.e., − h

R is exactly the expression of λ = λ(P, S) appearing in (3.3).
To show that again we take a specific situation in order to illustrate the

geometry (see Figure 4) we first define µ such that ā− µγ̄ is orthogonal to
γ̄, i.e., (ā− µγ̄, γ̄) = 0 or (ā, γ̄) = µγ2. Hence

µ =
(ā, γ̄)

γ2
. (3.5)
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S = {z, (z − a)2 = R2}
P = {z, (z, γ) = γ2}
P is given in its normal form

xx

γ
P

γ

µγ

S={z,(z-a)²=R²}

(  ,γ)=βP={z,  z        }

Figure 4: Normal form.

Clearly, the distance from the center ā to P is h = γ − µγ or, by (3.5),

−h = µγ − γ = (µ − 1)γ =

·
(ā, γ̄)

γ2
− 1
¸
γ, i.e., − h

R
=
(ā, γ̄)− γ2

γR
=

(ā, γ̄)− β

γR
(where we have used the connection γ2 = β as we took the normal

form of P ). Thus we can conclude that λ appearing in (3.3) is exactly − h

R
in accordance with the discussion above.

After dealing with the geometrical meaning of (3.1), (3.2) and (3.3),
we are ready to prove the invariance of λ(Σ,Σ1) for Σ,Σ1 two generalized
spheres. This will be done in the next section. But before turning to that,
we want to point out a few additional facts:

Remarks
(1) Inclination depends linearly on the cross ratio, but we will not make

any use of that [10].
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(2) Inclination is closely related to the concepts of separation and inver-
sive distance, [9]. Separation is the same as inclination, but with a negative
sign. Inversive distance is also a very close concept. It is just the absolute
value of inclination. Thus obviouisly both separation and inversive distance
are conformal invariant as well.

(3) The case of tangency is of particular interest. If S = {z, (z − a)2 =
R2}, S1 = {z, (z−b)2 = ρ2} are two tangent spheres with R, ρ > 0 (meaning
that their interiors are disjoint), we get from (3.1):

λ(S, S1) = λ =
R2 + ρ2 − (R+ ρ)2

2Rρ
= −1. (3.6)

In the case R > 0, ρ < 0 we get λ = 1 (see Figure 5)

Figure 5:

(4) In case of tangency between a plane and a sphere, the situation is
very similar (see Figure 6).

Figure 6:
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(5) As mentioned in section 3.1, if we reflect the sphere S = {z, (z−a)2 =
R2} in the unit sphere, we choose one of the two possible values of R,
and then the new center after reflection is a

a2−R3 (provided, of course, that
a2 6= R2) and the new radius is chosen to be R

a2−R2 where R is the specific

chosen value for S. We now motiviate this in R̂n. Indeed, we separate
between two caps: a2 > R2, a2 < R2. Suppose R > 0. Then in the first case
the image is bounded and thus R

a2−R2 is the right choice. In the other case,
i.e., a2 < R2, the image contains infinity and thus the radius of the image
is negative, and thus, again, R

a2−R2 < 0 is the right choice (see Figure 7)

o
o

a a

R R

z²=1 S=S(a,R) S=S(a,R)

a²>R² ,    R>0 a²<R²

Image of S is bounded.

                  as expected.    R
a²-R²

>0
   R
a²-R²

<0

Image of S is not bounded.

   Then, 

,    R>0

Figure 7:

3.3 Invariance of inclination

We are now back in Gn. Our aim is to show invariance of inclination be-
tween two (generalized) spheres Σ,Σ0 under reflection in another (gener-
alized) sphere Σ0. In fact, the invariance property is more general. Any
orthogonal transformation, translation or magnification, keeps this invari-
ance as well.

Lemma 3.1. Given two generalized spheres in Gn, and applying an or-
thogonal n× n matrix T = (tij)ni,j=1 acting on Gn, the inclination remains
invariant. Similarly, translation or magnification keep the inclination in-
variant.
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Proof. Let S = S(a,R), S1 = S1(b, ρ) be two given spheres and T an
orthogonal transformation. By (3.1), λ = λ(S, S1) =

R2+ρ2−(a−b)2
2Rρ . We have

shown that applying T keeps R, ρ the same. Also T (a− b) = Ta− Tb and
(Ta− Tb)2 = (a− b)2. This ends the proof of this case.

Now let S = S(a,R), P = {z, (z, γ) = β}. We have by (3.3) λ(P, S) =
(a,γ)−β

γR . Applying T we get for the image of P : (Tz, Tγ) = (z, γ) = β. Also,
Ta, the image of a, is the center of the image of S = S(a,R). In addition, R

remains the same. Also, γ =
q
Σγ2j =

q
Σuj=1(Tγ)

2
j =

p
(Tγ, Tγ). Putting

all this together, we have for the inclination of the two images of P, S:

λ =
(Ta, Tγ)− βp

(Tγ)2R
=
(a, γ)− β

γR
= λ(P, S),

which ends the proof of this case as well.
The case of two planes (i.e., (3.2)) is even simpler and details are omitted.
The proof for translations and magnifications is really not difficult. We

give one example and leave the rest to the reader. Let S = S(a,R), S1 =
S1(b, ρ) be two spheres. Suppose we impose magnification by M on Gn.
Thus (z − a)2 = R2 is replaced by (Mz −Ma)2 = (MR)2.

Similarly, (Mz −Mb)2 = (Mρ)2. Hence the new inclination satisfies

λ =
(MR)2 + (Mρ)2 − (Ma−Mb)2

(MR)(Mρ)
= λ(S, S1).

Theorem 3.1. Given two (generalized) spheres in Gn, Σ,Σ0 and another
(generalized) sphere Σ0, it follows that λ(Σ,Σ0) remains invariant after re-
flection of Σ,Σ0 with respect to Σ0.

Proof. We first note that by combination of Theorem 3.1 and Lemma 3.1,
it follows that any Möbius transformation (i.e., this means a combination
of translations, magnifications and reflections) or orthogonal transformation
keep the inclination invariant.

In order to prove Theorem 3.1, we have again to check various different
cases. In fact, the proofs are simple and we show only one case, namely,
S = Σ = {z, (z − a)2 = R2}, S1 = Σ0 = {z, (z − b)2 = ρ2}, Σ0 = S0 =
{z, z2 = 1} and, in addition, a2 6= R2, ρ2 6= b2. We have for the new λ:

λ =

R2

(a2−R2)2 +
ρ2

(b2−ρ2)2 −
¡

a
a2−R2 − b

b2−ρ2
¢2

2 R
a2−R2 · ρ

b2−ρ2
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or

λ =

R2−a2
(a2−R2)2 +

ρ2−b2
(ρ2−b2)2 +

2(a,b)
(a2−R2)(b2−ρ2)

2 Rρ
(a2−R2)(b2−ρ2)

λ =

1
(R2−a2) +

1
ρ2−b2 +

2(a,b)
(a2−R2)(b2−ρ2)

2 Rρ
(a2−R2)(b2−ρ2)

λ =
(ρ2 − b2) + (ρ2 − a2)− 2(a, b)

2Rρ
=

ρ2 +R2 − (a− b)2

2Rρ
.

3.4 Mutual inclination in Gn

Given n different (generalized) spheres {Σj}nj=1, we say that they have mu-
tual inclination γ, if and only if λ(Σj ,Σc) = γ for j 6= c, 1 ≤ j, c ≤ k. For
later purposes we will need

Theorem 3.2. Let n + 1 (generalized) spheres be given in Gn such that
they have mutual inclination λ 6= 1. Then, by a chain of Möbius maps and
orthogonal transformations, we may assume that all radii of the spheres are
the same.

For the proof of Theorem 3.2 we will need to use Theorem 3.1. In
addition we will use two lemmas that are stated and proved in what follows.

Lemma 3.2. If Σ,Σ0 are two (generalized) spheres in G1 such that λ(Σ,Σ0) 6=
1, then by a suitable reflection it is possible to assume that the two radii of
Σ,Σ0 are the same.

Proof. First note that λ 6= 1 is a necessary conditon. Indeed, given two
(different) spheres Σ,Σ0 such that Σ = {z, (z−a)2 = R2},Σ = {z, (z−b)2 =
R2}, then λ(Σ,Σ0) = R2+R2−(a−b)2

2R·R = 1 − (a−b)2
2R2 . Since Σ,Σ

0 are assumed
to be different spheres with the same radius R, it necessarily follows that
a 6= b. Thus λ(Σ,Σ0) 6= 1. Assume now that λ 6= 1. Our aim is to show that
in the space G1 we can make an inversion such that the two new radii will
be equal.

First, it is obviously allowed to assume that the two given spheres (ac-
tually segments) in G1 are bounded, i.e., S = {z, (z − a)2 = R2}, S1 =
{z, (z − b)2 = ρ2} we put the notation d = b − a. We want to invert with
respect to S0 = {z, (z − c)2 = 1} and find c. Changing the variable by
translation it is equivalent to take S0 = {z, z2 = 1}, i.e., the unit sphere and
find a suitable a provided d = b − a is fixed. After inversion with respect
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to S0 we get the new radii R
a2−R2 ,

ρ
b2−ρ2 . In order to make them equal, we

need to solve for a the equation R
a2−R2 =

ρ
(a+d)2−ρ2 . Since a is considered

as unknown, it is convenient to denote a = x. Of course, a = x = R or
a+ d = x+ d = ρ are not admissible solutions. By a trivial calculation,

x2(R− ρ) + 2xRd+ (Rd2 −Rρ2 + ρR2) = 0, x = a. (3.7)

Since λ 6= 1, we have R2 + ρ2 − d2 6= 2ρR or

(R− ρ)2 6= d2. (3.8)

We first show that in view of (3.8) the equation (3.7) must have two
different solutions. Indeed, the discriminant ∆ is equal to 4[(Rd)2 − (R −
ρ)(Rd2 − Rρ2 + ρR2)]. Thus 1

4∆ = R2d2 − (R − ρ)Rd2 − (R − ρ)2Rρ =
ρR[d2 − (R− ρ)2] 6= 0.

Now, if the two solutions to (3.7), (say, x1, x2) are both different from
R, then at least one of the solutions is different also from ρ− d and we are
done. Hence, it remains to check the possibility that one of the solutions
(say x1) equals R. If the other one is diffeent from ρ − d, again we are
done. Hence let us assume that x1 = R, x2 = ρ − d. In that case we get
(x− x1)(x− x2) = (x−R)(x− ρ+ d) = 0 or

x2 − x(R+ ρ− d)−R(d− ρ) = 0. (3.9)

Since (3.9) is the same as (3.7), we easily get equating coefficients(
2Rd = (−R− ρ+ d)(R− ρ)

Rd2 −Rρ2 + ρR2 = −(d− ρ)(R− ρ)R.

The second equation leads to a contradiction. Indeed,
d2 + ρ(−ρ + R) = −(d − ρ)(R − ρ) leads to d2 = (R − ρ)(−d + ρ − ρ) or
d = ρ−R which contradicts (3.8).

Lemma 3.3. Let n + 1 spheres in Gn have mutual inclination λ, λ 6= 1.
Let n of them have the same radius. Then the n+ 1th sphere has its center
on the “perpendicular line” to the “n-plane” of the centers of the n spheres,
emanating from the “center of gravity” of the centers.

Proof. First we note that all mutual distances among the given n-spheres
are the same. Indeed, by assumption, all have mutual inclination λ. Also,
radii are all the same. Now, λ = ρ2+R2−(a−b)2

2PR . If ρ = R = τ where

τ is the common value of the radii, we get λ = 2τ2−(a−b)2
2τ2 = 1 − (a−b)2

2τ2 ,
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which means that (a − b)2 is equal for all distances, or putting this differ-
ently, all mutual distances are the same. We now make use of Theorem
2.2, and the invariance property of the inclination. We thus may assume
that the centers of the n spheres are located at {(0, 0, . . . , 1, 0, . . . , 0)

jth place

}nj=1
(see Figure 8).

(0,0,1) radius = τ

(0,1,0) radius = τ

(1,0,0) radius = τ (For G³)

Figure 8:

Denote, as before, the common value of all equal radii of the n spheres
by τ . Aso denote the coordinates of the center of the n + 1th sphere by
(z1, z2, . . . , zn). Since we are given that the inclination between each of the
n spheres and this n+1th sphere is again equal to the same value λ, we have

λ =
ρ2 + τ2 − [Σj 6=kz2j + (zk − 1)2]

2ρτ
=

ρ2 + τ2 − Σnj=1z2j + 1− 2zk
2ρτ

.

Hence we get at once that z1 = z2 · · · = zn. Denoting this common value by
α we get that the center of the n+1th sphere is located at (α, α, . . . , α). Now,
the center of gravity of the plane determined by the centers is

¡
1
n ,

1
n , . . . ,

1
n

¢
.

Since
(α − 1

n , α − a
n , . . . , α − a

n) is a vector perpendicular to each of the vectors
(0, . . . , 1, 0, . . . , )

j−th
− ¡ 1n , 1n , . . . , 1n¢ = ¡− 1n , . . . , 1 − 1

n ,− 1n , . . . ,− 1n
¢
(as can easily be checked),

we are done.
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Proof of Theorem 3.2. The proof of Theorem 3.2 is by an induction
process. We have shown that given the mutual inclination λ, λ 6= 1, then
we can prove the claim of Theorem 3.2 for n = 1, i.e., for two spheres in
G1 (Lemma 3.2). We now proceed, in the induction process, from n to
n+ 1. Hence assume that we are given n+ 1 spheres in Gn, such that they
have mutual inclination λ, λ 6= 1. By the induction assumption we may
assume that n spheres have the same radius, denoted by R. Without loss
of generality we may assume that all centers of n spheres are located in the
plane zn = 0. Indeed, if this is not so, we can arrive at this situation by ap-
plying translations and orthogonal transformations (see Lemma 2.7). Since
the property of equal radii remains invariant by translations and orthogonal
transformations, there is, indeed, no loss of generality to assume that all
centers of the n spheres are located at the plane zn = 0. We have seen
already that if all n spheres have the same radius R, and mutual inclination
λ, then all mutual distances are the same.

Our aim now is to use Lemma 3.3. It will be convenient to assume that
the center of gravity is at zero and that the center of the first sphere is
located at (1, 0, . . . , 0). Also, we assume that mutual distances among the n
centers satisfy d2 = 2. (In fact, what we do is, rotating the plane appearing
in Lemma 3.3 and, after translation, arrive at the situation described above).
Using Lemma 3.3, we know that, necessarily, the center of the n+1th sphere
is located at (0, 0, . . . , 0, α) for some α. We have λ = R2+R2−d2

2R·R = 1− d2

2R2
=

1− 1
R2
, i.e.,

λ = 1− 1

R2
. (3.10)

Also, denoting by ρ the radius of the remaining n+1th sphere and using the
fact that the inclination of this sphere with all other spheres is equal to λ,
we get

λ =
R2 + ρ2 − (1 + α2)

2Rρ
. (3.11)

It follows at once from (3.10) and (3.11) that

α2 = (ρ−R)2 − 1 + 2ρ
R
. (3.12)

Our next aim is to make an inversion with respect to a sphere with radius
1 and a center ā = (0, 0, . . . , x), x to be fixed later. Obviously, ā has the
same distance from all centers of the first n spheres. Hence all radii of the
n spheres will be equal, after the inversion, to R1 = R

1+x2−R2 . In addition,
inversion ofs the n + 1th sphere changes the radius ρ of this sphere to the
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radius ρ1 =
ρ

(α−x)2−ρ2 . It now remains to show that it is possible to choose
x such that R1 = ρ1. Doing so, the proof will be finished, because this will
mean that all radii of the n+ 1 spheres are equal.

We need to solve ρ1 = R1 or

R

1 + x2 −R2
=

ρ

(α− x)2 − ρ2
. (3.13)

This is equivalent to R(α2+x2−2αx−ρ2)−ρ(1+x2−R2) or x2(R−ρ)−2αRx
+ (Rα2 −Rρ2 − ρ+ ρR2) = 0. Hence, x = αR±√∆

R−ρ , where
∆ = α2R2−(R−ρ)(Rα2−Rρ2−ρ+ρR2) = ρRα2−(R−ρ)(−Rρ2−ρ+ρR2).
>From (3.12) we get, after an easy calculation,

∆ = ρ2. (3.14)

Hence, x = αR±√∆
R−ρ = αR±ρ

R−ρ . Thus

x1 =
αR+ ρ

R− ρ
, x2 =

αR− ρ

R− ρ
(3.15)

are two possible solutions for x. This ends the proof of Theorem 3.2.
Our next aim is to analyze the (more restricted) situation in Rn. Hence

consider the real version of Theorem 3.2.

Theorem 3.3. Let n+1 (generalized) spheres be given in Rn such that they
have mutual inclination λ 6= 1. Then λ < 1 is a necessary and sufficient
condition that these spheres may be transformed by a chain of Möbius maps
and orthogonal transformation to another set of n+ 1 spheres having equal
radii R, 0 < R <∞.

Proof. The process of proving Theorem 3.2 is essentially the same in our
case. If λ < 1, one needs to show that we get a real solution. To check the
first step of induction (i.e., Lemma 3.2) we recall that 14∆ = ρR[d2−(R−ρ)2].
We need to check that for λ < 1 we get two different real solutions. But
λ = R2+ρ2−d2

2ρR and thus λ < 1 is equivalent to (R − ρ) < d2 which implies

for ∆ appearing in Lemma 3.2 that 1
4∆ = ρR[d2 − (R − ρ)2] > 0. Hence√

∆ is real, which is what we need. The next step of the induction causes
no problem, as the passage from n to n+1 in the induction process implies
by (3.14) that ∆ = ρ2, i.e., ∆ > 0 for real ρ 6= 0. This ends one direction of
the proof, i.e., showing that if λ < 1, then indeed we can find n+ 1 spheres
with equal radii. Proving the other part is much shorter. Indeed, by (3.10)
we see that λ = 1− 1

R2 . Hence, if λ > 1, R is not real.
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We note that in [8] a special case of the above theorem is proved, namely,
the case λ = −1, i.e., the case of tangency. The proof is entirely different.

Remark. There is one point in the proof of Theorem 3.2 and Theorem
3.3 that needs further explanation. One may argue that the n + 1th (gen-
eralized) sphere appearing in the proof of Lemma 3.2 is not necessarily a
sphere, but may be a plane. To complete the argument for this case one
needs only to use an additional reflection with respect to a sphere with a
center at any point of the form (α,α, . . . , α, t) (for some complex α and t)
which is not on the plane. Then each of the n spheres is reflected to a new
sphere and all n spheres have the same radius after reflection. The plane
is reflected to a sphere and we are back in the previous situation. Indeed,
by additional magnifications, translations and orthogonal transformations,
spheres cannot be transformed to planes.

Thus, only one case remains to be checked, namely, if there is not any
point of the form (α, α, . . . , α, t) that is not on the plane. But we now show
that such a case contradicts the condition of mutual inclination. Indeed,
λ = (a,γ)−β

γR = (a,γ)
γR as β = 0 for the case under consideration. a may be

any of the n unit vectors (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 1). Thus
γ, the vector perpendicular to the plane under consideration, must be of
the form (τ , τ , . . . , τ , η). Since γ is perpendicular to any vector of the form
(α, α . . . , α, t), we must have η = 0. Hence the orthogonality condition turns
out to be Σn−1k=1ατ = (n−1)ατ = 0. This leads to one of the two possibilities:
α = 0 or τ = 0. Hence we get the desired contradiction.

4 Inclination theorems

Let n + 1 (generalized spheres {Σj}n+1j=1 be given in Gn with mutual incli-
nation γ, γ 6= 1, and Σn+2 be another sphere in Gn having an inclination µ
with each of {Σj}n+1j=1 , such that µ satisfies a certain condition, to be speci-
fied later. Now let Σ be an arbitrary sphere in Gn which we call “a reference
sphere”. Denote by {λj}n+2j=1 the inclinations of {Σj}n+1j=1 with Σ respectively.
In what follows, we shall prove some theorems concerning relations among
{Σλj}n+2j=1 , γ, µ. Theorem 4.2 is a generalization of Mauldon’s theorem [7]
and was announced (for the real case) in [11] without proof.

Theorem 4.1. Let n + 1 spheres {Σj}n+1j=1 be given in Gn with mutual in-
clination γ, γ 6= 1, and γ 6= − 1n . Let Σn+2 be another sphere in Gn with
inclination µ with each of {Σj}n+1j=1 where

µ2 =
1 + γn

1 + n
. (4.1)
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Let Σ be any sphere of reference in Gn. Denote by {λj}n+2j=1 the inclinations
of Σ with {Σj}n+2j=1 respectively. Then

Σn+1k=1λk = (n+ 1)µλn+2. (4.2)

Proof. Following a model of Coxeter [8], we now take the plane Σn+1j=1 zj =

1 in Gn+1 and we may assume that all centers of the spheres, Σ, {Σj}n+2j=1 are
in this plane. By Theorem 3.2 we may assume that all radii of {Σj}n+1j=1 are
the same, say R, and further, we may assume that the centers of {Σj}n+1j=1

are located at (1, 0, . . . , ), (0, 1, 0 . . . , ), . . . , (0, 0, . . . , 1). Hence

γ =
R2 +R2 − 2

2R2
= 1− 1

R2
, 1− γ =

1

R2
. (4.3)

Since Σn+2 has the same inclination µ with each of the set of spheres
{Σj}n+1j=1 , we have, denoting by ρ the radius of Σn+2 its center’s coordinates
by (α1, α2, . . . , αn+1),

µ =
R2 + ρ2 − ¡Σj 6=kα2j + (αk − 1)2¢

2ρR
=

R2 + ρ2 − Σα2j − 1 + 2αk
2ρR

.

Hence all {αk} are equal. Also (α1, α2, . . . , αn+1) satisfy Σn+1j=1αj = 1 by our
construction. Thus α1 = α2 = · · · = αn+1 =

1
n+1 . The distance dk of this

center (i.e.,
¡
1

n+1 , . . . ,
1

n+1

¢
) from the points (0, . . . , 1, 0, . . . ,

kth
) satisfies

d2k = Σj 6=k
1

(n+ 1)2
+

µ
1− 1

n+ 1

¶2
= Σn+1j=1

1

(n+ 1)2
+ 1− 2

n+ 1

=
n+ 1

(n+ 1)2
+ 1− 2

n+ 1
.

Hence
d2k =

n

n+ 1
for each k, 1 ≤ k ≤ n+ 1. (4.4)

Thus µ = R2+ρ2−d2k
2ρR =

R2+ρ2− n
n+1

2ρR . Using the given condition (4.1) for µ, we
get

R2 + ρ2 − n

n+ 1
= 2ρRµ, µ2 =

1 + γn

1 + n
.

Solving the equation ρ2−(2Rµ)ρ+R2− n
n+1 = 0 for ρ, we get ρ = Rµ±√∆,

∆ = (Rµ)2 − ¡R2 − n
n+1

¢
. Putting µ2 = 1+γn

1+n and γ = 1− 1
R2 , by (4.3) we

very easily get ∆ = 0. Hence finally we have

ρ = Rµ. (4.5)
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Note that ρ = 0, µ = 0 and γ = − 1n are equivalent. This explains the
condition γ 6= − 1n . Our aim is now to show (4.2).

Denote the coordinates of the center of the sphere of reference Σ by
(y1, . . . , yn+1). Obviously Σn+1j=1 yj = 1, since this point is located also in the
plane
Σn+1j=1 zj = 1. Denote by r the radius of Σ. By definition of {λk}n+1k=1 we get

λk =
R2 + r2 − ¡Σj 6=ky2j + (yk − 1)2¢

2rR

or

λk =
R2 + r2 − Σn+1j=1 y

2
j − 1 + 2yk

2rR
, 1 ≤ k ≤ n+ 1. (4.6)

For λn+2 we similarly get λn+2 =
r2+ρ2−Σn+11

¡
yj− 1

n+1

¢2
2rρ or

λn+2 =
ρ2 + r2 −Σn+1j=1 y

2
j +

1
n+1

2rρ
(4.7)

(where we have used Σn+1j=1 yj = 1).
>From (4.6), and again applying Σyj = 1, we have

Σn+1k=1λk =
(n+ 1)

¡
R2 + r2 − Σn+1j=1 y

2
j

¢− (n− 1)
2rR

. (4.8)

Using (4.5), (4.7) and (4.8) we get that (4.2) is reduced to

(n+ 1)
¡
R2 + r2 − Σjy2j

¢− (n− 1)
2rR

=
(n+ 1)

¡
ρ2 + r2 − Σn+1j=1 y

2
j +

1
n+1

¢
2rρ

· ρ
R
,

or (n+1)R2−(n−1) = (n+1)ρ2+1. This is equivalent to (n+1)(R2−ρ2) = n.
This is the same (from (4.5)) as (n+1)(R2−R2µ2) = n or (n+1)R2(1−µ2) =
n. Putting µ2 = 1+γn

1+n by (4.1) and γ = 1 − 1
R2 , this follows at once.

(Alternatively we can use ∆ = 0 which is equivalent and was shown above.)
This ends the proof of Theorem 4.1 in the case where Σ is a sphere.

If Σ is a plane, say, P = {z, (z, η) = β, Σn+1j=1 zj = 1} we have (see (3.3))

λj =
ηj − β

Rη
, j = 1, 2, . . . , n+ 1. (4.9)

(Indeed, (a,η)−βRη =
0·η1+···+1·ηj+0·ηj+1+···−β

Rη =
ηj−β
ηR ). Similarly,

λn+2 =

¡
Σn+1j=1 ηj

¢
1

n+1 − β

ηρ
. (4.10)
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We need to check (4.2), or (using (4.9, and 4.10),

1

Rη

µ
Σn+11 ηj − (n+ 1)β

¢
= (n+ 1µ

·
1

n+ 1

¡
Σn+1j=1 ηj

¢− β

¸
1

ηρ

=
µ

ηρ

¡
Σn+1j=1 ηj − (n+ 1)β

¶
.

But this follows at once from (4.5), i.e., ρ = Rµ.
Note that γ 6= 1 is a natural condition, as for γ = 1 there is no chance

to prove any relation (cf. [7]). This remark applies also for other theorems
as well. Thus the proof of Theorem 4.1 is now complete.

Remark. The discussion of the “plane” case could be omitted using the
remark at the end of Theorem 3.3.

Theorem 4.2. Let n + 1 spheres {Σj}n+1j=1 be given in Gn with mutual in-
clination γ 6= 0, γ 6= 1, γ 6= −1

n . Let Σn+2 be another sphere which is
orthogonal to each of {Σj}n+1j=1 . Let Σ be any sphere of reference in Gn.
Denote by {λj}n+2j=1 the inclination of {Σj}n+2j=1 with Σ respectively. Then¡

Σn+1k=1λk
¢2 −µn+ 1

γ

¶
Σn+1k=1λ

2
k =

µ
n+

1

γ

¶
(1− γ)(λ2n+2 − 1). (4.11)

Proof. Comparing Theorem 4.2 with Theorem 4.1 we see that the con-
dition (4.1) on µ – appearing in Theorem 4.1 – is now replaced by the
orthogonality condition, i.e., µ = 0. Then we get instead of a linear relation
(Theorem 3.3) the relation (4.11). Like in the proof of Theorem 4.1 we sep-
arate the two cases, namely, Σ is a sphere or a plane. Of course we may use
various formulas developed for the proof of Theorem 4.1.

Hence we now turn to the first case, i.e., Σ is a sphere. We use the same
notation as in Theorem 4.1, i.e., the center of Σ is (y1, . . . , yn+1), Σn+1j=1 yj =
1. Like in the proof of Theorem 4.1, the fact that Σn+1 has the same
inclination µ (in this case µ = 0) implies that the coordinates of Σn+2 are¡

1
n+1 , . . . ,

1
n+1

¢
. Thus d2k, the distances of the center of Σ from each of the

{Σj}n+1j=1 , satisfy (4.4), i.e., d
2
k =

η
n+1 . Since in our case Σn+2 is orthogonal

to {Σj}n+1j=1 , we have µ = 0, or

ρ2 +R2 − n

n+ 1
= 0. (4.12)

Note that if ρ = 0, then R2 = 1
1−γ =

n
n+1 or γ = − 1n , which explains the

condition γ 6= − 1n . The radius of Σ is, again, denoted by r. To make the

38



calculation easier, it will be convenient to put the following notation,

a = R2 − ρ2 − 1

n+ 1
, b = Σn+1j=1 y

2
j − r2 −R2. (4.13)

>From (4.6) and (4.13)

λk = (2yk − 1− b)
1

2rR
, 1 ≤ k ≤ n+ 1 (4.14)

and (4.7) and (4.14) yield

λn+2 =

µ
ρ2 − b−R2 +

1

n+ 1

¶
1

2rρ
=
−b− a

2rρ
. (4.15)

>From (4.14) we easily get (using Σn+1k=1yk = 1)¡
Σn+1k=1λk

¢
=

1

4r2R2
[(n+ 1)2b2 + (n− 1)2 + 2(n− 1)(n+ 1)b]. (4.16)

>From (4.13) and (4.14) we have¡
Σn+1k=1λ

2
k

¢
=

1

4r2R2
[(n+1)b2+(n+1)+2(n+1)b+4(r2+R2−1)]. (4.17)

Using the orthogonality condition (4.12) and γ = 1− 1
R2 (from (4.3)) we get

ρ2 =
−1− nγ

(n+ 1)(1− γ)
,

ρ2

R2
=
−1− nγ

n+ 1
. (4.18)

>From (4.12) and (4.13), using (4.3) we get

a = 2R2 − 1 = 1 + γ

1− γ
. (4.19)

In order to prove our theorem for the sphere case we have to confirm (4.11).
In view of (4.15), (4.16), (4.17), (4.18) and (4.19) this means checking if

1

4r2R2
£
(n+ 1)2b2 + (n− 1)2 + 2(n− 1)(n+ 1)b¤−µn+ 1

γ

¶
1

4r2R2

× £(n+ 1)b2 + (n+ 1) + 2b(n+ 1) + 4(r2 +R2 − 1)¤
=

µ
n+

1

γ

¶
(1− γ)

·µ
1 + γ

1− γ
+ b

¶2 1

4r2ρ2
− 1
¸
.

This will be done by equating coefficients.
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In order to check the coefficient of b2, we need to confirm
(n+1)2

4r2R2
− (n+ 1

γ )
1

4r2R2
(n+ 1) = (n+ 1

γ )(1− γ) 1
4r2ρ2

. This is valid in view of
(4.18).

Equating the coefficient of b, we have

2(n− 1)(n+ 1)
4r2R2

−
µ
n+

1

γ

¶
1

4r2R2
2(n+ 1)

=

¡
n+ 1

γ

¢
(1− γ)2

¡1+γ
1−γ

¢
4r2ρ2

which is, again, easily confirmed using (4.18).
It remains to check the free coefficient of b, i.e.,

1

4r2R2

·
(n− 1)2 − (n+

1

γ

¢¡
(n+ 1) + 4(r2 +R2 − 1)¢¸

= (n+
1

γ
)(1− γ)

·¡1 + γ

1− γ

¢2 1

4r2ρ2
− 1
¸
.

We first consider the coefficient of r2 on the left hand side. Then
−(n+ 1

γ
)4r2

4r2R2 = (n + 1
γ )(1 − γ)(−1), since 1

R2 = 1 − γ by (4.3). This cancels¡
n+ 1

γ

¢
(1− γ)(−1) on the right hand side.

Thus it remains to check

(n− 1)2 −
µ
n+

1

γ

¶·
(n+ 1) + 4(R2 − 1)

¸
=

R2

ρ2

µ
n+

1

γ

¶
(1− γ)

¡1 + γ

1− γ

¢2
.

Using (4.3) and (4.18), this is the same as

(n−1)2−
µ
n+

1

γ

¶·
(n+1)+4

µ
1

1− γ
−1
¶¸

=

µ
n+

1

γ

¶
(1 + γ)2

(1− γ)
· (n+ 1)

−(nγ + 1)
or

(n− 1)2γ(1− γ)− (nγ + 1)£(n+ 1)− γ(n− 3)¤ = −(n+ 1)(1 + γ)2,

which is easily seen to be an identity. This ends the case of Σ equal to a
sphere.

We now move on to the case where Σ is a plane P . The direct proof is
omitted, as we can again use the argument given in the remark at the end
of Theorem 4.2, showing that there is no loss of generality to assume that
Σ (i.e., the reference sphere) is really a sphere and not a plane.
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Remark. It is worthwhile to consider the situation in Rn instead of Gn.
As Mauldon pointed out (see [7, section 5]), if three (generalized) spheres in
Rn have mutual inclination λ, then necessarily λ > 1 is impossible. Thus one
can use Theorem 3.3 to give a “real” proof of Theorem 4.2, provided n ≥ 2,
since for such n there are at least three spheres having mutual inclination
λ, which cannot be bigger than 1, as explained above, which enables one to
use Theorem 3.3. On the other hand, if n = 1, λ > 1 is not excluded as we
now show. This means that for n = 1 we need to use the “complex” proof
to get the real result.

We now show that λ > 1 is, indeed, possible for n = 1. Consider the
spheres S1 = {z, (z+a)2 = R21}, S2 = {z, (z−a)2 = R22}, S3 = {z, (z−b)2 =
ρ2}. We have for λ = λ(S1, S2), λ =

R21+R
2
2−4a2

2R1R2
.

Comparing with the notation of Theorem 4.2 (for n = 1), we have S1 =
Σ1, S2 = Σ2, and S3 = Σ3. This means that S3 is orthogonal to {Sj}j=1,2.
In other words, R21+ρ

2 = (b+a)2, R22+ρ
2 = (b−a)2. Hence R21+R22−4a2 =

2x for x = −a2 + b2 − ρ2. For λ we get λ = x
R1R2

= x√
(b+a)2−ρ2

√
(b−a)2−ρ2 .

By a trivial calculation 1
λ2
= 1 − 4a2

x2 ρ
2. >From the definition of x, taking

a 6= 0, a2 < b2, and ρ small enough, we have 0 < 1
λ2

< 1, λ > 0, which
means λ > 1. Thus, indeed, λ > 1 is possible for n = 1, in contrast to the
other cases, namely, n ≥ 2, and thus, indeed, in view of the limitations of
Theorem 3.3 (i.e., λ ≤ 1), our proof of Theorem 4.2 cannot be “translated”
to a real proof for this particular case.

Our next aim is to prove a lemma which will be useful for “translating”
inclination theorems to results about radii. In many similar cases we will
omit the details of this translation, which is, indeed, very simple.

Lemma 4.1. Let Sj = {z, (z − aj)
2 = R2j}j=1,2 be two spheres in Gn. Let

Su = {z, (z − cu)2 = R2} be a sphere of reference in Gn such that c2 6= 0.
Denote by λj, j = 1, 2, the inclinations of Sj with Su respectively. Then, if
u→∞, we have

λ1
λ2
→ R2

R1
, n→∞. (4.20)

Proof. Clearly, λj =
R2+R2j−(aj−cu)2

2RRj
, j = 1, 2. Hence λ1

λ2
= R2

R1
·

R2+R21−(a1−cu)2
R2+R22−(a2−cu)2

. But R2+R21−(a21+c2u2−2(a1,cu))
R2+R22−(a22+c2u2−2(a2,cu))

→ 1, as u→∞ (since c2 6= 0).
This ends the proof.

Our next theorem is a corollary of Theorem 4.2. We use the concept of
Poincaré extension [12], or more precisely, the complex version of it, which
is of the same nature as the real case. We note that instead of using our
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approach, we could give a direct proof which is very similar to the proof of
Theorem 4.2. The present proof is considerably shorter.

Lemma 4.1 will be used to prove, from our next theorem, the complex
version of Mauldon’s theorem. (Using Lemma 4.1, one can give a “radii”
version of Theorem 4.2 as well, but we omit the simple details.)

Theorem 4.3. Let {Σj}n+2j=1 be n+2 spheres in G
n having mutual inclination

γ 6= 0, γ 6= 1. Let Σ be another sphere in Gn. Denote by {λj}n+2j=1 the
inclinations of {Σj}n+2j=1 with Σ respectively. Thenµ

Σn+2k=1λk

¶2
−
µ
n+ 1 +

1

γ

¶
Σn+2k=1λ

2
k =

µ
n+ 1 +

1

γ

¶
(γ − 1). (4.21)

Proof. It will be more convenient to prove the theorem for Gn−1 and use
Theorem 4.2 for Gn. Hence, let {Σj}n+1j=1 be given in Gn−1 having mutual
inclination γ 6= 1. Σ is another sphere in Gn−1 and {λj}n+1j=1 the inclinations
with respect to Σ. We now use the Poincaré extension from Gn−1 to Gn,
and consider the extended spheres {Σj}n+1j=1 and Σ in Gn. (See Figure 9.)

Σ
Σ

j

Figure 9: Poincare’ extension.

Clearly, the inclinations of the extended {Σj}n+1j=1 with the extended Σ
remain the same, i.e., {λj}n+1j=1 . Also, it is clear that zn = 0 is an orthogonal
plane to each of the extended {Σj}n+1j=1 . It turns out that σ, the inclination of
zn = 0 with respect to the extended Σ, is also zero because of our construc-
tion. We are now in a position to apply Theorem 4.2 for the n+1 extended
spheres {Σj}n+1j=1 , the orthogonal sphere zn = 0 to each of the (extended)
{Σj}n+1j=1 , and the sphere of reference (extended) Σ. Hence, from Theorem
4.2 (noting that the notation σ replaces λn+2 in Theorem 4.2 and also that
σ = 0), we get (from (4.11) using σ = 0)µ
Σn+1k=1λk

¶2
−
µ
n+

1

γ

¶
Σn+1k=1λ

2
k = −

µ
n+

1

γ

¶
(1− γ) = (γ − 1)

µ
n+

1

γ

¶
.
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But this is exactly (4.21), replacing n − 1 by n. This ends the proof of
Theorem 4.3.

Remark. Since we have used Theorem 4.2, one might think that we
have the limitation n+1+ 1

γ 6= 0. But since ρ 6= 0 for the case n+1+ 1
γ = 0,

we can use a simple continuity argument to complete the proof for this case
as well.

We next apply Theorem 4.3 and Lemma 4.1 to get the complex version
of Mauldon’s theorem.

Theorem 4.4. (Complex version of Mauldon’s theorem). Let {Sj}n+2j=1 be
n + 2 spheres in Gn having mutual inclination γ 6= 0, γ 6= 1. Denote their
radii by {Rj}n+2j=1 respectively. Thenµ

Σn+2j=1

1

Rj

¶2
−
µ
n+ 1 +

1

γ

¶
Σn+2j=1

1

R2j
= 0. (4.22)

Proof. Using (4.21) we haveµ
Σn+2k=1

λk
λn+2

¶2
−

µ
n+ 1 +

1

γ

¶
Σn+2k=1

µ
λk
λn+2

¶2
=

µ
n+ 1 +

1

γ

¶
(γ − 1) 1

λ2n+2
.

Now taking the sphere of reference as in Lemma 4.1, and letting u→∞, we
have 1

λn+2
→ 0, λk

λn+2
→ Rn+2

Rk
for k = 1, 2, . . . , n+ 1, and we get (4.22). For

λ = −1, i.e., the tangency case, we get from (4.22)µ
Σn+2j=1

1

Rj

¶2
− nΣn+2j=1

1

R2j
= 0. (4.23)

This is the complex version of Gosset’s theorem. For n = 2 (i.e.., G2) we
get µ

Σ4j=1
1

Rj

¶2
− 2Σ4j=1

1

R2j
= 0, (4.24)

which is the complex version of Descartes theorem.
Later on, we will give some more inclination theorems that will be, in

fact, generalizations of the results in section 4. These generalizations will be
concerned with two spheres of references instead of one, like in the above.
But before doing so, we want to use some of our results to deduce new facts
concerning hyperbolic space and its connection to inclinations.
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5 Inclination and hyperbolic space

Let (z1, . . . , zn, zn+1) ∈ Gn+1. We introduce the notation

zj = xj + itj , 1 ≤ j ≤ n, zn+1 = ix0 + t0 (5.1)

for {xj}nj=0, {tj}nj=0 all real numbers. Consider the sphere S =
©
z,Σn+1j=1 z

2
j =

R2,
R = i

ª
. We consider the subspace of Gn+1 by putting the restrictions tj = 0,

0 ≤ j ≤ n. Then, in this subspace, S is reduced to

Σnj=1x
2
j + (ix0)

2 = i2 = −1. (5.2)

This is the same as

1 + Σnj=1x
2
j = x20, Σ

n
j=1x

2
j = (x0 − 1)(x0 + 1). (5.3)

This means that S is “projected” onto a hyperboloid of the form (5.3). We
recall the transformation [12]

xj = yj(1 + x0), 1 ≤ j ≤ n. (5.4)

>From (5.3) and (5.4) we get

Σnj=1y
2
j =

x0 − 1
x0 + 1

. (5.5)

Consider now another sphere centered at (µ1, . . . , µn, iµ0) and with radius
R. Then

Σnj=1(xj − µj)
2 − (x0 − µ0)

2 = R2, (5.6)

which is another hyperboloid.
We will be particularly interested in the case of orthogonality of the two

spheres introduced above, namely,

i2 +R2 = d2 = Σnj=1µ
2
j + (iµ0)

2, R2 − 1 = Σnj=1µ2j − µ20. (5.7)

Following the standard notation, (cf. [12]), we denote the (real) hyperbolic
n dimensional plane by ∆n. One of our aims in this section is to give a new
proof for a theorem of Mauldon [7], i.e., the hyperbolic version of inclination
theorem in ∆n. Our different proof will motivate some new insight later in
the present paper.
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Theorem 5.1. (Mauldon hyperbolic inclination theorem). Let n+2 spheres
of {S1, S2, . . . , Sn+2} be given in the hyperbolic plane ∆n. Denote by {βj}n+2j=1

the hyperbolic radii of {Sj}n+2j=1 respectively. Assume further that {Sj}n+2j=1

have mutual inclination γ 6= 0, γ 6= 1. Thenµ
Σn+2j=1

1

tanhβj

¶2
− ¡n+ 1

γ
+ 1
¢
Σn+2j=1

1

tanh2βj
=
¡
n+ 1+

1

γ

¢
(γ − 1). (5.8)

For the proof of Theorem 5.1 we will need some preliminary results.
First, we need the “translation” of Theorem 4.2 to the radii version (see
Lemma 4.1). Following the notation of Theorem 4.2, and using it for n+ 1
instead of n, we further denote the radii of {Σj}n+2j=1 by {Rj}n+2j=1 respectively.
Also, for our purposes we shall need to take the radius of Σ to be i. Then the
“radii” version of (4.11) (replacing n by n+ 1, and noting that Rn+2 = i),µ

Σn+2j=1

1

Rj

¶2
−
µ
n+ 1 +

1

γ

¶
Σn+2j=1

1

R2j
=

µ
n+ 1 +

1

γ

¶
(γ − 1). (5.9)

The idea of the proof of Theorem 5.1 will be by transformation of (5.9) to
∆n, using (5.4). Our aim is to derive (5.8) from (5.9). In order to do that
we need to show first that the inclination in the original space Gn+1 remains
invariant, i.e., that it is the same after the transformation into ∆n. As a
matter of fact, this is generally not true, but if one uses the orthogonality
conditions (5.7), the result is valid. Thus we have

Lemma 5.1. Let S1, S2 be two “projected” spheres

Σnj=1(xj − µj)
2 + (ix0 − iµ0)

2 = R2, (5.10)

Σnj=1(xj − ηj)
2 + (ix0 − iη0)

2 = ρ2,

where both spheres are orthogonal to the “projected” sphere Σnj=1x
2
j + (ix0)

2

= i2 = −1. Assume further that these two spheres are transformed, as
explained above, to two new spheres in ∆n. Then the inclination λ between
S1 and S2 is the same as the inclination γ between their images in ∆n.

Proof. It will be convenient to introduce the notation

µ2 = Σnj=1µ
2
j , η2 = Σnj=1η

2
j , (µ, η) = Σnj=1µjηj . (5.11)

By the definition of λ we have

λ = λ(S1, S2) =
ρ2 +R2 − d2

2ρR
=

ρ2 +R2 − £Σnj=1(µj − ηj)
2 + (iµ0 − iη0)

2
¤

2ρR
.
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Hence

λ =
ρ2 +R2 − µ2 − η2 + 2(µ, η) + µ20 + η20 − 2µ0η0

2ρR
.

Using the orthogonality condition (5.7) applied to Sj , j = 1, 2, we have

R2 − 1 = µ2 − µ20, ρ2 − 1 = η2 − η20. (5.12)

Putting this in the above expression for λ, we get

λ =
2µ, η)− 2µ0η0 + 2

2ρR
=
1 + (µ, η)− µ0η0

ρR
.

Again using (5.12) for ρ and R, we have

λ =
1 + (µ, η)− µ0η0p

1 + µ2 − µ20
p
1 + η2 − η20

. (5.13)

In order to confirm that λ is equal to γ, i.e., the inclination between the
images, we first need to find expression for the images of Sj , j = 1, 2. We
have from (5.10) Σnj=1x

2
j + µ2 − 2(x, µ) − x20 − µ20 + 2x0µ0 = R2. We now

use the transformation (5.3) to get µ2 − 1− 2(x, µ)− µ20 + 2x0µ0 = R2. By
(5.12) R2 + µ20 − µ2 = 1. Hence −2 − 2(x, µ) + 2x0µ0 = 0. Using (5.4) we
have 0 = −1− (x, µ) + x0µ0 = −1− (1 + x0)(y, µ) + x0µ0. Denote

τ = (y, µ). (5.14)

We have from (5.14) and the above

x0 =
1 + τ

µ0 − τ
. (5.15)

>From (5.5) and (5.15) we easily get

Σnj=1y
2
j =

2τ

1 + µ0
+
1− µ0
1 + µ0

. (5.16)

>From (5.14) and (5.16) we get at once

Σnj=1

µ
yj −

µj
1 + µ0

¶2
=
1− µ0
1 + µ0

+
µ2

(1 + µ0)
2
=
1− µ20 + µ2

(1 + µ0)
2
.

Using (5.12) we finally get

Σnj=1

µ
yj −

µj
1 + µ0

¶2
=

µ
R

1 + µ0

¶2
, (5.17)
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which is the equation of the image sphere of S1 in ∆n. In other words, the

new radius is R
1+µ0

and the new center is
µ

µ1
1+µ0

, . . . , µn
1+µ0

¶
. Similarly,

Σnj=1

µ
yj −

ηj
1 + η0

¶2
=

µ
ρ

1 + η0

¶2
(5.17’)

is the image of S2 in ∆n.
Our aim is now to find γ, the inclination between these two images and

confirm that γ = λ. For γ we have

γ =

¡
R

1+µ0

¢2
+
¡ ρ
1+η0

¢2 − Σnj=1¡ ηj
1+η0

− µj
1+µ0

¢2
2
¡

R
1+µ0

¢¡ ρ
1+µ0

¢
or

γ =

R2

1+µ0
+ ρ2

(1+η0)
2 +

2(η,µ)
(1+η0)(1+µ0)

− η2

(1+η0)
2 − µ2

(1+µ0)
2

2 R
(1+µ0)

· ρ
(1+η0)

.

From (5.12) we have

R2

(1 + µ0)
2
− µ2

(1 + µ0)
2
=

1− µ20
(1 + µ0)

2
=
1− µ0
1 + µ0

.

Similarly, ρ2

(1+η0)
2 − η2

(1+η0)
2 =

1−η0
1+η0

. Hence we get for γ

γ =

1−η0
1+η0

+ 1−µ0
1+µ0

+ 2(η,µ)
(1+η0)(1+µ0)

2 R
1+µ0

· ρ
1+η0

,

or

γ =
1− η0µ0 + (η, µ)

Rρ
=

1 + (µ, η)− µ0η0p
1 + µ2 − µ20

p
1 + η2 − η20

.

Hence γ = λ by (5.13) and the proof of Lemma 5.1 is now complete.
Next, we shall find the connection between R and the hyperbolic radius

of its image in ∆n.

Lemma 5.2. With the above notations the hyperbolic radius β of the image
sphere of S1, given by (5.17), satisfies

R = tanhβ. (5.18)
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Proof. Recalling that the new radius is R
1+µ0

and the new center is µ
1+µ0

(see (5.17)), we have for D, the hyperbolic diameter of the image sphere,

D = cn

·1 + ¡ µ+R1+µ0

¢
1− ¡ µ+R1+µ0

¢ · 1− ¡ µ−R1+µ0

¢
1 +

¡ µ−R
1+µ0

¢¸
(see Figure 10).

(By distance we mean, Euclidean)
Distance of A, the center, from the origin is µ

1+µ0

Distance of B from the origin is µ−R
1+µ0

Distance of C from the origin is µ+R
1+µ0

B

A

C

n
∆

Figure 10:

Hence, D = cn
h
(1+µ0+µ+R)
(1+µ0−µ−R) ·

(1+µ0−µ+R)
(1+µ0+µ−R)

i
. But

(1 + µ0 +R+ µ)(1 + µ0 +R− µ) = (1 + µ0 +R)2 − µ2

= 1 + µ20 +R2 − µ2 + 2µ0 + 2R+ 2µ0R

= 2 + 2µ0 + 2R+ 2µ0R

where we have used (5.12). Similarly,

(1 + µ0 − µ−R)(1 + µ0 + µ−R) = 2 + 2µ0 − 2R− 2µ0R.
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Hence, for the diameter D,

D = cn
1 + µ0 +R+ µ0R

1 + µ0 −R− µ0R
= cn

(1 + µ0)(1 +R)

(1 + µ0)(1−R)
= cn

1 +R

1−R
.

Thus we finally get for the hyperbolic radius β = 1
2D,

β =
1

2
cn
1 +R

1−R
. (5.19)

>From (5.19) we get (5.18) by a simple calculation. (Indeed, 1+R1−R = e2β or

R = e2β−1
e2β+1

= eβ−e−β
eβ+e−β .) This ends the proof of Lemma 5.2. Having Lemma

5.1 and Lemma 5.2 at hand, it is now easy to prove our theorem.

Proof of Theorem 5.1. By the conditions of Theorem 5.1, we are given
n+2 spheres {S1, S2, . . . , Sn+2} in ∆n with hyperbolic radii {β1, . . . , βn+2}
respectively. Also, it is given that the mutual inclination γ satisfies γ 6= 1.
Assume for a moment that this set of n+2 can be realized as images of n+2
spheres having radii {Rj}n+2j=1 respectively. Using Lemma 5.1 we have that
these n+ 2 spheres have mutual inclination λ, λ = γ. Also, by Lemma 5.2,
applied for each sphere of the set of n+ 2 spheres, we have by (5.18) that

Rj = tanhβj , 1 ≤ j ≤ n+ 2. (5.18’)

Hence (5.8) follows at once. It remains to show that realization is, indeed,
possible. So let S be a given sphere in ∆n, with the notation

Σnj=1(yj − ξj)
2 = r2. (5.20)

It has to be shown that the sphere can be viewed as an image of a suitable
sphere in Gn. This means that we have to check the conditions

ξj =
µj

1 + µ0
, 1 ≤ j ≤ n, r2 =

R2

(1 + µ0)
2
, (5.21)

such that, in addition, the orthogonality condition (5.7) is satisfied, namely,
R2 = 1 + µ2 − µ20 for µ

2 = Σni=1µ
2
j . Thus, in view of (5.21)

R2 = (1 + µ0)
2r2 = 1 + µ2 − µ20 = 1 + ξ2(1 + µ0)

2 − µ20

(where ξ2 = Σnj=1ξ
2
j ). Solving for µ0 we get at once

µ0 =
−(r2 − ξ2)±

q
(r2 − ξ2)2 − [(r2 − ξ2)2 − 1]
γ2 − ξ2 + 1

,
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or

µ0 =
−r2 + ξ2 ± 1
r2 − ξ2 + 1

.

Hence the two solutions, µ0 = −1 and µ0 =
−r2+ξ2+1
r2−ξ2+1 . µ0 = −1 is excluded,

as µ0 + 1 6= 0 is a necessary condition by (5.21). The other solution is
possible, as obviously 1 +

¡1+ξ2−r2
r2−ξ2+1

¢
= µ0 + 1 6= 0.

To complete the discussion, note also that the denominator r2 − ξ2 + 1
cannot be equal to zero, as r2 = ξ2 − 1 leads to a contradiction. Indeed, by
construction, ξ2 < 1 and thus r2 < 0, which is not possible. This ends the
proof of the theorem.

Remark. It is worthwhile to note that all Rj satisfy Rj < 1. Indeed,
this follows from (5.180). It is possible to give a direct proof of this fact.
We differentiate between two cases: µ0 ≤ |µ|, µ0 > |µ|. If µ0 ≤ |µ|, then
|ξ| + R

(1+µ0)
= |µ|+R

1+µ0
< 1 yields R < 1 + µ0 − |µ| ≤ 1. If µ0 > |µ|, then

the orthogonality condition R2 = 1 + µ2 − µ20 implies R < 1. This remark
raises the question about equivalence of (5.8) and (5.9). In fact, in (5.9) no
restriction is needed on Rj . One is led to the question: Is it possible to give
a hyperbolic translation of (5.9) in the general case as well (i.e., without the
limitation Rj < 1, 1 ≤ j ≤ n + 2)? Later on we will again discuss the
issue and other matters concerning hyperbolic space and inclinations. In
the meantime we go back to the previous line of reasoning.

6 Further results on inclinations

In this section we aim to deal with various topics. First, we plan to generalize
some known results on radii to results on inclinations. This will help us later
on to discuss further the BOIP (bowl of integer property) and inclinations.
In addition, we will discuss Apollonian packing, dual Apollonian packing
and super Apollonian packing in connection with inclinations.

6.1 Some connections between Theorems 4.2 and 4.3

We recall that Theorem 4.2 deals with n + 1 spheres in Gn having mutual
inclination γ 6= 1, and an orthogonal sphere Σ to all of them. Theorem
4.3 deals with n + 2 spheres in Gn having mutual inclination γ 6= 1. First
note that λn+2 is a notation of two different quantities in Theorem 4.2 and
Theorem 4.3. In order to avoid confusion, we first change the notation in
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Theorem 4.2 and replace λn+2 appearing there by σ. Hence σ is now the
inclination of the orthogonal sphere with the reference sphere. λn+2 is (as
before) the inclination of the n+2th sphere with the reference sphere. Hence,
with the new notation we have instead of (4.11),

¡
Σn+1k=1λk

¢2 −µn+ 1

γ

¶
Σn+1k=1λ

2
k =

µ
n+

1

γ

¶
(1− γ)(σ2 − 1). (4.11’)

We have

Theorem 6.1. Let Σ1,Σ2, . . . ,Σn+2 be n+ 2 spheres in Gn having mutual
inclination γ 6= 0, γ 6= 1, n + 1

γ 6= 0. Let Σ0 be orthogonal to each of

{Σj}n+1j=1 . Let Σ be a sphere of reference in Gn. Denote by {λj}n+2j=1 the
inclinations of {Σj}n+2j=1 with Σ respectively. Denote by σ the inclination of
Σ0 with Σ. Then

λn+2 =
Σn+1j=1λj ± σ

q¡
n+ 1 + 1

γ

¢¡
n+ 1

γ

¢
(1− γ)

n+ 1
γ

. (6.1)

Proof. It will be convenient to denote

a = Σn+1k=1λk, b = Σn+1k=1λ
2
k. (6.2)

>From Theorem 4.3 and (4.21), we have with the notation of (6.2),

(a+ λn+2)
2 −

µ
n+ 1 +

1

γ

¶
(b+ λ2n+2) =

µ
n+ 1 +

1

γ

¶
(γ − 1).

Solving this quadratic equation for λn+2 we get

λn+2 =
a±

q¡
n+ 1 + 1

γ

¢£
a2 − ¡n+ 1

γ

¢
b+

¡
n+ 1

γ

¢
(1− γ)

¤
n+ 1

γ

. (6.3)

>From (4.110) we get

a2 −
µ
n+

1

γ

¶
b+

µ
n+

1

γ

¶
(1− γ) =

µ
n+

1

γ

¶
(1− γ)σ2.

Substituting this expression in (6.3) we have

λn+2 =
1

n+ 1
γ

·
a±

r¡
n+ 1 +

1

γ

¢¡
n+

1

γ

¢
(1− γ)σ2

¸
,
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which is another form of (6.1). This ends the proof of Theorem 6.1.
We now specialize (6.1) for a particular case.
Let n = 2 and γ = −1 (tangency case). We get,

λ4 =
λ1 + λ2 + λ3 ± σ

p
(3− 1)(2− 1) · 2

2− 1
or

λ4 = λ1 + λ2 + λ3 ± 2σ. (6.4)

Also, for this particular case (i.e., n = 1, γ = −1) we have for σ (from (4.110),
(λ1 + λ2 + λ3)

2 = λ21 + λ22 + λ23 + 2(σ
2 − 1). Hence

σ2 = λ1λ2 + λ1λ3 + λ2λ3 + 1. (6.5)

>From (6.4) and (6.5) we have

λ4 = λ1 + λ2 + λ3 ± 2
p
λ1λ2 + λ1λ3 + λ2λ3 + 1. (6.6)

Using our standard procedure to “pass” to radii, we use, as usual, Lemma
4.1. Then from (6.6),

λ4
λ1
= 1 +

λ2
λ1
+

λ3
λ1
± 2
s

λ2
λ1
+

λ3
λ1
+

λ2λ3

λ21
+
1

λ21
,

and letting u→∞ in Lemma 4.1

R1
R4

= 1 +
R1
R2

+
R1
R3

± 2
s

R1
R2

+
R1
R3

+
R21

R2R3

and dividing by R1,

R1
R4

=
1

R1
+
1

R2
+
1

R3
± 2
r

1

R1R2
+

1

R1R3
+

1

R2R3
. (6.7)

Here (6.7) is the complex form of Descartes 4 circle theorem. Similarly, from
(6.5), passing to radii and denoting by ρ, we get the radius of the orthogonal
sphere Σ0,

1

ρ
= ±

r
1

R1R2
+

1

R1R3
+

1

R2R3
. (6.8)

We now point out an important result that follows very easily from Theorem
6.1.
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Corollary 6.1. Let Σ1,Σ2, . . . ,Σn+1 be n + 1 spheres in Gn, having mu-
tual inclination γ, γ 6= 0 γ 6= 1, γ 6= −1

n . Let Σ
1
n+2,Σ

2
n+2 be two addi-

tional spheres, each having inclination γ with {Σj}n+2j=1 . Let Σ be a sphere
of reference in Gn. Denote by {λj}n+1j=1 the inclinations of {Σj}n+1j=1 with Σ.
Also denote by λ1n+2, λ

2
n+2 the inclinations of Σ

1
n+2,Σ

2
n+2 with Σ respectively.

Then

λ1n+2 + λ2n+2 = 2
Σn+1j=1λj

n+ 1
γ

. (6.9)

Proof. The result follows at once from (6.1), adding the two posssible
solutions for λn+2.

Denoting by {xj}n+1j=1 the “bends” (i.e., reciprocal of radii) of {Σj}n+1j=1

respectively, and by xjn+2, j = 1, 2, the bends of Σ
j
n+2, j = 1, 2 respectively,

we get from (6.9)

x1n+2 + x2n+2 = 2
1

n+ 1
γ

¡
Σn+1j=1xj

¢
. (6.10)

This is the complex form of a known result in the real case (cf. [13]).

6.2 Matrix approach and inclinations for Apollonian packing
in R2

We now specialize our discussion for the real case. Moreover, we take γ =
−1, i.e., the tangency case, and also n = 2. This is the setting for creating
the Apollonian packing. We start by recalling a few basic known facts.
Let Σ0,Σ1,Σ2,Σ3 be four mutually tangent (generalized) spheres in R2.
We also assume that their interiors are disjoint. Given Σ0,Σ1,Σ2, then in
addition to Σ3 there is another tangent sphere to {Σj}2j=0, say, Σ−1 (again,
with disjoint interior). Given Σ1,Σ2,Σ3, we have similarly, in addition to
Σ0, another sphere, say Σ4, also tangent to Σ1,Σ2,Σ3, and having disjoint
interior with each of them. We may say that after putting Σ4 in the “hole”
created by {Σj}3j=1, three new “holes” are created and we can “put” three
additional spheres in these holes. If we continue with this procedure for
ever, we get the Apollonian packing in R2 (see Figure 11).

In the situation described in Figure 11, we have for the straight lines,
Σ0,Σ1, that the bends of both of them are zero, i.e., x0 = x1 = 0. Denoting
the bends of Σj by xj , we now describe a known technique (see [14]) of
operating with three different matrices in connection with “filling” the three
“holes” as described above. To be more specific, let Σ1,Σ2,Σ3,Σ4 be the
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Σ0

Σ1

Σ-1 Σ2 Σ3

Σ4

Figure 11: A special case of Appolonian Packing.

spheres described as above. Thus we may say that Σ4 “fills” the “hole”
created by Σ1,Σ2,Σ3. Three new holes are created, i.e., by {Σ1,Σ2,Σ4},
{Σ1,Σ3,Σ4}, {Σ2,Σ3,Σ4}. To simplify notation, we denote by Σ5 the sphere
which “fills” the “hole” for each of the three cases. Thus, we arrive at the
following three options:

(Σ1,Σ2,Σ3,Σ4) → (Σ1,Σ3,Σ4,Σ5)

(Σ1,Σ2,Σ3,Σ4) → (Σ1,Σ2,Σ4,Σ5)

(Σ1,Σ2,Σ3,Σ4) → (Σ2,Σ3,Σ4,Σ5).

We first analyze the case (Σ1,Σ2,Σ3,Σ4)→ (Σ1,Σ3,Σ4,Σ5). Since {Σ1,Σ3,Σ4}
are mutually tangent to each other, and Σ1,Σ5 are the two options to “com-
plete” this set to four mutually disjoint four spheres, we get from (6.7) (or
(6.10) for n = 2 and γ = −1) that

x2 + x5 = 2(x1 + x3 + x4). (6.11)

This may be written as a matrix form, namely,
x1
x3
x4
x5

 =


1 0 0 0
0 0 1 0
0 0 0 1
2 −1 2 2



x1
x2
x3
x4

 . (6.12)
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Similarly, the case {Σ1,Σ2,Σ3,Σ4}→ {Σ1,Σ2,Σ4,Σ5} may be described by
x1
x2
x4
x5

 =


1 0 0 0
0 1 0 0
0 0 0 1
2 2 −1 2



x1
x2
x3
x4

 , (6.13)

and the third case, namely, (Σ1,Σ2,Σ3,Σ4) → (Σ2,Σ3,Σ4,Σ5) may be de-
scribed by 

x2
x3
x4
x5

 =


0 1 0 0
0 0 1 0
0 0 0 1
−1 2 2 2



x1
x2
x3
x4

 . (6.14)

The three cases will be called the “Ring Lemma Case” for (6.12), the “Knife
Case” for (6.13), and the “Spiral Case” for (6.14) (cf. [4] for motivation of
these names).

A similar description to the above may be given with the aid of the “dual
Apollonian packing”. We then also get three matrices, but with nonnega-
tive entries, which is sometimes more convenient. The “dual Apollonian
packing” is simply the Apollonian packing created from a given Apollonian
packing, by taking all orthogonal spheres. This means creating, for each
three mutually tangent spheres in the given Apollonian packing, the orthog-
onal sphere to all three. Denoting these three spheres by Σ1,Σ2,Σ3 and
their bends by x1, x2, x3 respectively, and the bend of the orthogonal sphere
by σ(123), we get from (6.7) and (6.8),

x4 = x1 + x2 + x3 + 2σ(123). (6.15)

Also,
x3 = x1 + x2 + x4 − 2σ(124) (6.16)

(with an obvious notation).
>From (6.15) and (6.16) we at once get

σ(124) = x1 + x2 + σ(123) (6.17)

(see Figure 12).

Σ5 and Σ3 are both tangent to Σ1,Σ2,Σ4.
Σ5 has a smaller radius, hence x5 > x3.
Thus
x5 = x1 + x2 + x4 + 2σ(124)
x3 = x1 + x2 + x4 − 2σ(124).
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5 Σ1

Σ 2

Σ3

4

(124)

(123)

Figure 12: Dual Appolonian Packing.

In view of (6.15) and (6.17) we get
x1
x2
x4

σ(124)

 =


1 0 0 0
0 1 0 0
1 1 1 2
1 1 0 1




x1
x2
x3

σ(123)

 . (6.18)

This replaces the description (6.13) for the “Knife Case”. As said above,
the fact that there are no negative entries in this matrix is sometimes an
advantage. Similarly, for the “Ring Lemma Case”

x1
x3
x4

σ(134)

 =


1 0 0 0
0 0 1 0
1 1 1 2
1 0 1 1




x1
x2
x3

σ(123)

 . (6.19)

and for the “Spiral Case”
x2
x3
x4

σ(234)

 =


0 1 0 0
0 0 1 0
1 1 1 2
0 1 1 1




x1
x2
x3

σ(123)

 . (6.20)
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(For reference of (6.18), (6.19) and (6.20) cf. [2] or [14]).
It is our aim now to show the complete analogy between the above and

the discussion for inclinations. Indeed, using (6.6) (or (6.9) for n = 2 and
γ = −1)

λ14 + λ24 = 2(λ1 + λ2 + λ3). (6.21)

Thus, instead of (6.12), we now have the more general relation
λ1
λ3
λ4
λ5

 =


1 0 0 0
0 0 1 0
0 0 0 1
2 −1 2 2



λ1
λ2
λ3
λ4

 (6.12’)

for the “Ring Lemma Case”.
For the “Knife Case”, instead of (6.13), we get

λ1
λ2
λ4
λ5

 =


1 0 0 0
0 1 0 0
0 0 0 1
2 2 −1 2



λ1
λ2
λ3
λ4

 (6.13’)

For the “Spiral Case”, instead of (6.14), we have
λ2
λ3
λ4
λ5

 =


0 1 0 0
0 0 1 0
0 0 0 1
−1 2 2 2



λ1
λ2
λ3
λ4

 (6.14’)

We now turn to the other description (namely, the one involved with the
orthogonal packing). With an obvious notation, we get from (6.4),

λ4 = λ1 + λ2 + λ3 + 2λ(123); (6.22)

λ3 = λ1 + λ2 + λ4 − 2λ(123). (6.23)

>From (6.22) and (6.23) we get

λ(124) = λ1 + λ2 + λ(123). (6.24)

Thus (6.22), (6.23) and (6.24) are generalizations of (6.15), (6.16) and (6.17)
respectively. (The choice of sign is, again, explained by Figure 12.) Indeed,
one may use Lemma 4.1 and the fact that in the limiting case we get the
results for radii.
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Hence, for the “Knife Case”, from (6.24) we get
λ1
λ2
λ3

λ(124)

 =


1 0 0 0
0 1 0 0
1 1 1 2
1 1 0 1




λ1
λ2
λ3

λ(123)

 . (6.25)

(In the limiting case, if the center of the “sphere of reference” tends to
infinity, we get (6.18) from (6.25).) Similarly, for the “Ring Lemma Case”,

λ1
λ3
λ4

λ(134)

 =


1 0 0 0
0 0 1 0
1 1 1 2
1 0 1 1




λ1
λ2
λ3

λ(123)

 (6.26)

and for the “Spiral Case”
λ2
λ3
λ4

λ(234)

 =


0 1 0 0
0 0 1 0
1 1 1 2
0 1 1 1




λ1
λ2
λ3

λ(123)

 . (6.27)

Here (6.26) and (6.27) are generalizations of (6.19) and (6.20) respectively.
We end this section by answering a question posed in [4], where the

significance of eigenvalues and eigenvectors of the matrices introduced above
was investigated.

We consider the “Ring Lemma Case” and the matrix appearing in (6.12)
or (6.120) representing it. It is known (cf. [4]) that the eigenvalues and eigen-
vectors of this matrix are {τ , (0, 1, τ , τ2)} { 1τ , (0, τ2, τ , 1)}, {−1, (0,−1,−1,−1)},
and {1, (1,−1,−1,−1)} where τ2 − 3τ + 1 = 0.

In [4] the eigenvalues τ and 1
τ are explained and the same is true for the

respective eigenvectors. This was done with the aid of the relation given
in (6.12), i.e., by investigating the geometry of the dynamic of changes of
the values of radii. Now we are able to explain the other two eigenvalues
(and their respective eigenvectors) with the aid of the more general relation
(6.120).

Let {Σ1,Σ2,Σ3,Σ4} be any “quad” (i.e., four mutually tangent spheres
with disjoint interiors). We now take in particular Σ, the sphere of reference
to be Σ1. Then

λ1 = λ(Σ,Σ1) = 1, λj = λ(Σ,Σj) = −1, j = 2, 3, 4.
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Since, 
1
−1
−1
−1

 =


1 0 0 0
0 0 1 0
0 0 0 1
2 −1 2 2




1
−1
−1
−1

 .

This means that λ5 = λ(Σ,Σ5) = −1 (in view of (6.12)).
Figure 13 explains the situation where we have chosen Σ = Σ1 to be a

straight line. Of course, in view of the invariance of inclinations, there is
nothing special in this choice, and we can take an arbitrary quad.

Σ3

Σ2

Σ1=Σ

4 5

Figure 13: "Ring Lenna" case.

Of course we can continue this process:

(Σ1,Σ2,Σ3,Σ4)→ (Σ1,Σ3,Σ4,Σ5, )→ (Σ1,Σ4,Σ5,Σ6), . . . .

All corresponding vectors of inclinations:

(λ1, λ2, λ3, λ4), (λ1, λ3, λ4, λ5), (λ1, λ4, λ5, λ6), . . .

are all equal to (1,−1,−1,−1) as Σ4,Σ5,Σ6, . . . , are all tangent to Σ = Σ1
with
disjoint interiors, which implies λ(Σj ,Σ) = −1, j = 2, 3, . . . . This explains
{1, (1,−1,−1,−1)}. To explain the remaining eigenvalue and eigenvector
{−1, (0,−1, 1,−1)}, multiply by a to get another eigenvector, namely,
(0,−a, a,−a). To motivate the choice of a, we use (4.21) for n = 2, γ = −1,
to get (λ1 + λ2 + λ3 + λ4)

2 − 2(λ21 + λ22 + λ23 + λ24) = −4 and for our vector
(0,−a, a,−a) this is (0−a+a−a)2−2(a2+a2+a2) = −4 or a2 = 4

5 . Hence,
a = ± 2√

5
. Thus (since λ1 = λ(Σ,Σ1) = 0), this means that Σ is orthogonal

to Σ1 and intersects with Σ2,Σ3,Σ4, . . . in an angle ±ϕ, as cosϕ = ± 2√
5
.
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We now use, again, the model described in Figure 13. It is well known
that if the radius of Σ3 is chosen to be 1, then the radius of Σ2 is τ , where
τ satisfies τ2 − 3τ + 1 = 0, i.e., the eigenvalue described above (cf. [4]).
Also it is known that all tangency points among (Σ2,Σ3), (Σ3,Σ4), . . . are
on the perpendicular line to Σ1 ([4, p. 521]). We now choose Σ to be
this perpendicular line. It is an easy calculation to show that λ(Σ,Σ2) =
−2√
5
, λ(Σ,Σ3) =

2√
5
, λ(Σ,Σ4) =

−2√
5
, . . . (see Figure 14).

cosϕ = − hj
Rj

sinϕ = τ−1
τ+1 =

1√
5

τ = 3+
√
5

2
cosϕ = 2√

5

Σ3

Σ1
4

Σ2

Σ

h2

h3
τ

1

1ϕ

ϕ

Figure 14:

Note that if the line Σ is chosen as in Figure 14, then h is positive for
Σ2,Σ4, . . . and negative for Σ3,Σ5, . . . where λ(Σ,Σj) = λj = − hj

Rj
, j =

2, 3, 4, . . . .
Summing up, we have for {Σj}41 and a = 2√

5
,

(λ1, λ2, λ3, λ4) = (0,−a, a,−a)→ (0, a,−a, a) = (λ1, λ3, λ4, λ5).
This ends our discussion of eigenvalues and eigenvectors of the matrix asso-
ciated with the “Ring Lemma Case”.

Next, we will be interested in particular with some aspects of Apollonian
packing in R1. But before, we want to make some remarks concerning
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packing in Rn and Gn. We point out that the discussion about matrices
may be generalized to Rn and even to Gn. Of course, the disccussion in Gn

is formal, since it is hard to give a geometrical reasoning to “packing” in Gn.
But we definitely may speak about “chains” of spheres like in R2. We restrict
ourselves to one case, namely, the “Ring Lemma Case”, just as an example
to what can be done also in all the cases treated above. Hence consider, as
in Corollary 6.1, {Σj}n+2j=1 spheres in Gn, having mutual inclination γ, and
{Σj}n+1j=1 , Σn+3 having also mutual inclination γ, provided γ 6= 0, γ 6= 1, γ 6=
− 1n . Then, from (6.9) we have λ2 + λn+3 =

2
n+ 1

γ

¡
Σn+2j=3λj + λ1

¢
,


λ1
λ3
...

λn+3

 =


1 0 · · · 0
0 0 1 0 · · · 0

...
0 0 · · · 1
2

n+ 1
γ

, −1 · · · 2
n+ 1

γ




λ1
λ2
...

λn+2

 .

(6.28)
Instead of three matrices in R2 representing the three cases, “Knife”, “Ring”
and “Spiral”, we now have n+ 1 matrices in Gn. We will not push further
this line of reasoning.

6.3 Apollonian packing in R1

First, we recall the concept of inclination in R1. It is sometimes more con-
venient to consider “balls”, i.e., segments in R1 rather than “spheres”, i.e.,
pairs of points. Hence, let two “balls”, Σ1,Σ2 with radii R1, R2 respec-
tively, be given, such that the distance between their centers is d. Then the
inclination between Σ1 and Σ2 is,

λ(Σ1,Σ2) =
R21 +R22 − d2

2R1R2
(6.29)

(see Figure 15).
In case the two segments intersect, we may talk about the “angle” ϕ

between these two segments determined by cosϕ = λ(Σ1,Σ2). As usual,
R < 0 for the “ball” Σ = {x, |x− a| < R} means the complement of Σ̄ in R̂,
i.e., R̂\Σ̄.

We check first Descartes “three circles theorem“ and show that it actually
degenerates. Indeed, the theorem reduces to

¡
1
R1
+ 1

R2
− 1

R3

¢2
=
¡
n + 1

γ +

1
¢¡

1
R21
+ 1

R22
+ 1

R23

¢
for n = 1, and γ = −1 (in the case of tangency). Hence
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R2 R1

d

Figure 15: Packing of the real line.

¡
1
R1
+ 1

R2
− 1

R3

¢
= 1

R21
+ 1

R22
+ 1

R23
or 1

R1R2
= 1

R1R3
+ 1

R2R3
. Indeed, R3 = R1+R2,

and thus, this is a trivial identity (see Figure 16).

Σ1 Σ2

Σ3 Σ3

Figure 16: Degenerate case (tangent).

In order to understand better why this is a degenerate case, note that
for xj = 1

Rj
, j = 1, 2, we have to solve (x1+x2+x)2 =

¡
2+ 1

γ

¢
(x21+x22+x2).

Hence, if γ = −1 (the tangency case), we get only one solsution. But, as we
see, for other values of γ we get two solutions, which makes the situation
very similar to what occurs in Rn (or Gn) for n ≥ 2. Solving for x we get,

x =
x1 + x2 ±

√
∆

1 + 1
γ

,∆ =
¡
2 +

1

γ

¢·
(x1 + x2)

2 −
µ
1 +

1

γ

¶
(x21 + x22)

¸
. (6.30)

As an example fo “Apollonian packing” in R1, such that all {Rj} become
positive, consider the case 1 + 1

γ < 0. Then for a = x1 + x2, b = x21 + x22,

a2 > b > b
¡
1 +

1

γ

¢
, ∆ > 0. (6.31)

Hence, for the choice x =
¡
x1 + x2 +

√
∆
¢ · 1

1+ 1
γ

we get x > 0 and thus

R3 =
1
x > 0. It is possible to continue in this way, and to create infinite

“Apollonian packings” (see Figure 17).
An interesting question might be to investigate the size of the residual

set (say, the Hausdorff dimension). Similar questions in R2 are very deep
and not yet completely solved (cf. [4]).
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R2R1 R4 R3 R5

Figure 17: Non degenerate case (inclination).

In the next section we will be interested in the BOIP forR2 and R3. Also,
we will discuss the BOIP and its connection to reflecting the Apollonian
packing in any of its spheres.

7 “Bowl of Integers” property

7.1 Inclinations, Apollonian and dual Apollonian packing

As mentioned already in the introduction, Soddy was apparently the first
to discover this property [5]. It was rediscovered many times later on.
We now recall what we mean by this property. Suppose we are given a
quad in R2, say, (Σ1,Σ2,Σ3,Σ4). Assume further that its bends xj =
1
Rj
, 1 ≤ j ≤ 4 are all integers. Then creating the Apollonian pack-

ing from this quad, one gets all bends as integers. This is a surpris-
ing fact, but very easy to prove. Indeed, consider for instance the “Ring
Lemma Case”. Since (Σ1,Σ2,Σ3,Σ4) → (Σ1,Σ3,Σ4,Σ5) we have x2 + x5
= 2(x1 + x3 + x4) and thus if {xj}4j=1 are integers, then obviously x5 is an
integer as well. Thus, by the same reasoning, all bends of this particular
Apollonian packing are integers. For R3 we get a similar situation. Indeed,
consider for instance, (Σ1,Σ2,Σ3,Σ4,Σ5) → (Σ1,Σ3,Σ4,Σ5,Σ6). Then we
have for the bends {xj}6j=1, x2 + x6 =

2
n+ 1

γ

Σ5j=3xj = Σ
5
j=3xj as n = 3 and

γ = −1.
Thus again, if {xj}5j=1 are integers, all bends of this particular Apol-

lonian packing will be integers. (In fact, one may consider the case n+ 1
γ = 1

or n + 1
γ = 2 even for higher values of n, i.e., for R

n, n > 3. We then get
the same result again, i.e., all bends will be integers provided the starting
n+2 bends are such.) Now, if we make a Möbius transformation, of course
the radii are changed, and the BOIP may be destroyed. It is a nice fact
that we have a similar situation for the inclinations (meaning the BOIP).
But contrary to the previous case of radii, inclinations are not affected by a
Möbius transformation, as inclinations are invariant under such maps. We
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start with a known theorem of Boyd [9]. Our proof is much simpler.

Theorem 7.1. (Boyd). Given any Apollonian packing in Rn, for n = 2 or
n = 3, all mutual inclinations between any two spheres of the packing are
odd numbers.

Proof. We first recall (as Boyd mentioned in his paper quoted above)
that the special “spiral” case was proved earlier by Coxeter [8].

Since, as noted above, the inclination remains invariant under a Möbius
map, we can choose a convenient setting. Hence, consider the situation
described in Figure 18.

Σ2

Σ1

Σ3 Σ4

5

Figure 18: Mutual inclination (odd numbers).

Let Σ = Σ1 be the sphere of reference. Then

λ1 = λ(Σ,Σ1) = 1, λ2 = λ(Σ,Σ2) = −1,
λ3 = λ3(Σ,Σ3) = −1, λ4 = λ4(Σ,Σ4) = −1.

Thus, using λ5+λ1 = 2(λ2+λ3+λ4), we get λ5 = 2 · (−3)− 1 = −7. More
generally, by induction, we have (Σij ,Σi2 ,Σi3 ,Σi4)→ (Σi1 ,Σi3 ,Σi4 ,Σi5) for
two quads: λi2 +λi5 = 2(λi1 +λi3 +λi4) and thus, assuming λi1 , λi2 , λi3 , λi4
to be odd integers, it follows that the same is true for λi5 .

For n = 3 the proof is very similar. We take two parallel planes Σ1 and
Σ2 and three spsheres Σ3,Σ4,Σ5 between them and all are mutually tangent.
Then for Σ = Σ1, λ1 = λ(Σ,Σ1) = 1, λj = λ(Σ,Σj) = −1 for j = 2, 3, 4, 5.
Thus from λ1 + λ6 = λ2 + λ2 + λ4 + λ5 we get λ6 = −4 − 1 = −5. The
passage from n to n+ 1 is very similar and is omitted.

Next, we prove a similar theorem for the dual packing.
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Theorem 7.2. Given an Apollonian packing in R2, consider the dual (i.e.,
the orthogonal) Apollonian packing. If L is any sphere in the original Apol-
lonian packing and K is any sphere in the dual Apollonian packing, then the
inclination λ = λ(K,L) between the two spheres is an even integer.

Proof. Let L be any sphere in the original Apollonian packing andK any
sphere in the dual one. Our aim is to show that λ(L,K) is even. We take K
as a sphere of reference. Denote it by Σ1 = Σ. If (Σ1,Σ2,Σ3,Σ4) is a quad,
then λ(Σ,Σ1) = λ(Σ1,Σ1) = 1, λ(Σ,Σj) = −1 for j = 2, 3, 4. Let Σ(123)
be orthogonal to the set Σ1,Σ2,Σ3. Then, obviously, λ(Σ(123),Σ) = 0. The
given sphereK is orthogonal to three spheres of the original Apollonian pack-
ing. Denote these three spheres by (Σn,Σn+1,Σn+2) and K by Σ(n,n+1,n+2).
Operating with the three matrices described in (6.25), (6.26) and (6.27)
(i.e., “Knife”, “Ring” and “Spiral”), we can reach in a finite number of
steps, say n − 1, from (Σ1,Σ2,Σ3,Σ(123)) to (Σn,Σn+1,Σn+2,Σn,n+1,n+2).
We now proceed with the induction process. The first “move” is already
explained above. Indeed, λ(Σ(124),Σ) = 0 is an even number. As explained
above we reach the final stage by a finite number of “moves”, say, n − 1.
Assume, as an example, that the second “move” is with the “spiral” ma-
trix, i.e., the situation described in (6.27). We then have, λ(Σ(234),Σ) =
λ(Σ2,Σ)+λ(Σ3,Σ)+λ(Σ(123),Σ). But λ(Σ(123),Σ) = λ(Σ(123),Σ1) = 0 and
λ(Σ2,Σ) = λ(Σ3,Σ) = 1, as Σ = Σ1 and thus (Σ,Σ2,Σ3,Σ4) is a quad.
Hence λ(Σ(234),Σ) = 2 which is an even number as claimed. More gen-
erally, the mth “move” is very similar. Assuming that λ(Σ(m,m+1,m+2),Σ)
is even by the induction assumption, and using Theorem 7.1, we get that
λ(Σ(m,m+2,m+3),Σ) is an even number too, as a sum of two odd numbers
and an even number. (In the notation above, we used the “Ring” case,
(m,m+ 1,m+ 2,m+ 3)→ (m,m+ 2,m+ 3,m+ 4) with an obvious nota-
tion. Of course, the reasoning is identical for the other two options.) Thus
showing the assertion from m to m + 1, we now have that at the final nth

stage, λ(Σ(n,n+1,n+2),Σ) = λ(K,L) is an even number as claimed.
Remark. The situation in R3 is different. Indeed, going back to

Theorem 6.1, we get from (6.1) for n = 3 and the tangency case, i.e.,
γ = −1, that λ4 =

¡
Σ3j=1λj ± σ

p
(3 + 1− 1)(3− 1)(1 + 1)¢ 1

3−1 or λ4 =
1
2 [λ1 + λ2 + λ3] ± σ

√
3. In view of Theorem 7.1, {λj}4j=1 are odd integers

and thus σ = λ(K,L), K a sphere of the original Apollonian packing in R3,
and L a sphere in its dual Apollonian packing, is an irrational number of
the form (2λ4−λ1−λ2−λ3) 1√3 (except for the trivial case of orthogonality,
i.e., σ = 0).
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7.2 Reflected Apollonian packing and inclination

Given an Apollonian packing, we have seen that it is worthwhile to consider
the dual (orthogonal) Apollonian packing. We can consider also other Apol-
lonian packings created from the given one. Indeed, it is possible to reflect
the Apollonian packing in any of its members. We first recall some known
facts about this procedure (cf. [4]), and then relate the results to the BOIP.
To make the discussion easier and more geometrical, we confine ourselves to
Rn, rather than to Gn.

Hence, let Σ1 be a sphere in Rn, Σ be a sphere of reference and Σ0
another sphere. We aim to reflect Σ1 with respect to Σ0 and find how the
inclination λ(Σ1,Σ) is changed after the reflection. We further denote by
Σ∗1 the reflection of Σ1 with respect to Σ0. Our aim is to confirm that in
the special case of tangency between Σ1 and Σ0 (from outside),

λ(Σ,Σ∗1) = λ(Σ,Σ1) + 2λ(Σ,Σ0). (7.1)

First we consider the situation without the limitations of tangency. Be-
cause of the invariance property of the inclination, there is no loss of gener-
ality to assume that Σ0 is a plane.

We now introduce some notations:
h1 = the distance of the center of Σ1 from Σ0
h = the distance of the center of Σ from Σ0
d = the distance of the centers of Σ and Σ1
d∗ = the distance of the centers of Σ and Σ∗1
R = the radius of Σ
R1 = the radius of Σ1.

We have (see Figure 19)

λ(Σ,Σ0) =
−h
R

, λ(Σ1,Σ0) =
−h1
R1

. (7.2)

Also,
d2 = a2 + (h− h1)

2, (d∗)2 = a2 + (h+ h1)
2 (7.3)

and

λ(Σ,Σ1) =
R2 +R21 − d2

2RR1
, λ(Σ,Σ∗1) =

R2 +R21 − (d∗)2
2RR1

. (7.4)

Hence, combining (7.3) and (7.4), we get,

λ(Σ,Σ1)− λ(Σ,Σ∗1) =
2hh1
RR1

. (7.5)
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Σ

Figure 19: Reflected Appolonian Packing.

Since h
R · h1R1 =

¡−h
R

¢¡−h1
R1
) we deduce from (7.5) with the aid of (7.2),

λ(Σ,Σ∗1) = λ(Σ,Σ1)− 2λ(Σ,Σ0)λ(Σ1,Σ0). (7.6)

Specializing now to the case of tangency of Σ1 (from outside) to Σ0, we get in
particular that h1 = R1, λ(Σ1,Σ0) = −1, and thus (7.1) follows from (7.6).
We now make use of the invariance property of the quantities appearing in
(7.1). Hence consider now the case where Σ0 is a sphere of radius ρ, and we
use Lemma 4.1, as usual, to pass from inclinations to radii by letting the
center of Σ tend to infinity. Denoting by R the radius of Σ1 and by R∗ the
radius of the reflection of Σ1 with respect to Σ0, we then easily get,

1

R∗
=
1

R
+
2

ρ
. (7.7)

Comparing (7.6) and (7.7) we see that again, as in previous cases, we have
a complete analogy between the case of inclinations and the case of radii.

We now restrict ourselves to R2. Also, to make things clear, we spe-
cialize ourselves to the “Knife” case, having in mind that “Ring” and “Spi-
ral” cases are similar. Hence, let (Σ1,Σ2,Σ3,Σ4) be a quad in R2 and
Σ be a sphere of reference in R2. {λj}4j=1 will denote the inclinations of
{Σj}4j=1 and Σ respectively. Since we are interested in the “Knife” case,
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we consider (Σ1,Σ2,Σ3,Σ4) → (Σ1,Σ2,Σ4,Σ5) and we recall (6.130) for
λj = λ(Σ,Σj), 1 ≤ j ≤ 5:

λ1
λ2
λ4
λ5

 =


1 0 0 0
0 1 0 0
0 0 0 1
2 2 −1 2



λ1
λ2
λ3
λ4

 .

It is our aim now to show that operating with the transpose of this matrix,
we get information about reflection of the quad (Σ1,Σ2,Σ3,Σ4) with respect
to Σ4. This somewhat surprising fact was already pointed out in [4]. Indeed,
we have 

λ1 + 2λ4
λ2 + 2λ4
−λ4

λ3 + 2λ4

 =


1 0 0 2
0 1 0 2
0 0 0 −1
0 0 1 2



λ1
λ2
λ3
λ4

 . (7.8)

Comparing with (7.1) we see that the new vector on the left of (7.8) actually
describes the new inclinations after reflection. Here Σ0 = Σ4 (as we reflect
with respect to Σ4). Hence from (7.1) we get for our case

λ(Σ,Σ∗j ) = λ(Σ,Σj) + 2λ(Σ,Σ4), j = 1, 2, 3. (7.1’)

(Note that (7.10) does not apply for j = 4 as Σ4 is not tangent to itself from
the outside!)

Since the reflection of Σ4 with respect to itself changes the sign of the
radius, we get that

λ(Σ,Σ∗4) = −λ(Σ,Σ4). (7.9)

Denoting λ∗j = λ(Σ,Σ∗j ), j = 1, 2, 3, 4 using (7.8), we get from (7.10) and
(7.9), 

λ∗1
λ∗2
λ∗4
λ∗3

 =


1 0 0 2
0 1 0 2
0 0 0 −1
0 0 1 2



λ1
λ2
λ3
λ4

 (7.10)

(see Figure 20).
Since (Σ∗1,Σ∗2,Σ∗3,Σ∗4) is a quad, note that (λ

∗
1, λ

∗
2, λ

∗
3, λ

∗
4) = (λ1+2λ4, λ2+

2λ4,
−λ4, λ3+2λ4)must satisfy (4.21) for n = 2, γ = −1 or

¡
(λ1+2λ4)+(λ2+2λ4)

+ (λ3 + 2λ4)− λ4
¢2 − 2¡Σ3j=1(λj +2λ4)2 + λ24

¢
= −4 provided {λj}41 satisfy

(4.21).
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Figure 20: BOIP and reflection.

We leave it to the reader to check this simple calculation. Specializing
to the radii, (7.8) is reduced to

x1 + 2x4
x2 + 2x4
− x4

x3 + 2x4

 =


1 0 0 2
0 1 0 2
0 0 0 −1
0 0 1 2



x1
x2
x3
x4

 , (7.11)

where {xj}4j=1 are the bends {R−1j }4j=1.
We also have a similar remark in the special case, namely, the Descartes

four circle theorem must be satisfied by (x1 + 2x4, x2 + 2x4,−x4, x3 + 2x4),
or,

2
£
Σ3j=1(xj + 2x4)

2 + x24
¤
= [(x1 + 2x4) + (x2 + 2x4) + (x3 + 2x4)− x4

¤2
,
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provided 2Σ4j=1x
2
j =

¡
Σ4j=1xj

¢2. This is easily checked to be valid.
We are now in a position to relate the BOIP to reflection.

Theorem 7.3. Let A be an Apollonian packing in R2, and let AD be its
dual Apollonian packing. Let Σ0 be any sphere in A. Reflect A and AD with
respect to Σ0 to create two new Apollonian packings. Consider Σj ∈ A, j =
1, 2 and their reflections with respect to Σ0 denote by Σ∗j respectively. Then
the inclination λ(Σ1,Σ

∗
2) is an odd integer. Consider any Σ

D
1 ∈ AD and its

reflection (ΣD1 )
∗. Then λ(Σ1(Σ

D
1 )
∗) is an even integer.

Proof. The proof is an easy corollary of Theorems 7.1 and 7.2, and (7.1).
We have, by Theorem 7.1, that λ(Σ1,Σ2) is an odd number. The same is
true for λ(Σ1,Σ0).

>From (7.1) we get

λ(Σ1,Σ
∗
2) = λ(Σ1,Σ2) + 2λ(Σ1,Σ0).

Hence λ(Σ1,Σ∗2) is an odd integer. To prove the second assertion, we use
Theorem 7.2. We have that λ(Σ1,ΣD1 ) is an even integer. Applying, again,
the relation (7.1), we have

λ(Σ1, (Σ
D
1 )
∗) = λ(Σ1,Σ

D
1 ) + 2λ(Σ1,Σ0).

Hence λ(Σ1, (ΣD1 )
∗) is even as the sum of two even numbers. This ends the

proof of Theorem 7.3.
Note that in the limiting case we get a BOIP for radii in view of (7.7).

Indeed, if we are given an Apollonian packing that contains a quad with four
bends that are integers, then not only all bends of the Apollonian packing
are integers, but all bends of reflected Apollonian packings, and repeated
reflections with respect to each of the spheres will give a similar result. We
can now state

Theorem 7.4. Given any Apollonian packing in R2, having a quad with
four bends that are all integers, we have necessarily the BOIP for the dual
Apollonian packing and any new Apollonian packing created by a finite num-
ber of reflections with any of the spheres in the construction.

Proof. To complete the proof, there is only one thing to check. Since by
the above discussion there is nothing left to prove concerning the reflections,
we are left with the following assertion to prove: Given a quad having four
bends that are integers, then necessarily the bends of the orthogonal spheres
are also integers (see Figure 21).
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Figure 21: Preservation of BOIP under reflection.

But (see (6.7) and (6.8)

x4 = x1 + x2 + x3 ± 2σ,

where σ is the bend of the orthogonal sphere, Σ(123), to (Σ1,Σ2,Σ3). Hence,
what is left to show in order to confirm that σ is an integer, is that Σ3j=1xj−
x4 is an even integer. Indeed,

¡
Σ3j=1xj

¢− x4 =
¡
Σ4j=1xj

¢− 2x4 implies that
it is enough to show that Σ4j=1xj is an even number. Instead we show the

equivalent thing, namely, that
¡
Σ41xj

¢2 is an even number. But this follows
at once from Descartes’ four circle theorem, namely,

¡
Σ4j=1xj

¢2
= 2Σ4j=1x

2
j .

This ends the proof of Theorem 7.4.
The situation in R3 is different. In fact, we have already seen that

for n = 3 and γ = −1 (i.e., the tangency case) we get from (6.1), λ5 =
(λ1 + λ2 + λ3 + λ4 ± 2

√
3σ)12 . Hence, except for the trivial case σ = 0, if

{λj}5j=1 are integers, then σ is never an integer. In fact, it is an irrational
number of a specific form, namely, m√

3
for some integer m. On the other

hand, a similar result for reflection still holds. We omit the details.
We end this section by discussing the nature of the matrices associated

with reflection in R3. It turns out that the nice property of the transposed
matrices that we have shown in R2, is not valid any more in R3. This makes
the property in R2 even more mysterious and hard to motivate. Hence, sup-
pose we are given (Σ1,Σ2,Σ3,Σ4,Σ5), a set of five spheres in R3, mutually
tangent, and with disjoint integers. Let Σ be a sphere of reference in R3 and
denote by {λj}5j=1 the inclinations of Σ with {Σj}5j=1 respectively. Suppose
we consider the “move” which is similar to the “Ring Lemma Case” in R2.
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Then λ2 + λ6 = λ1 + λ3 + λ4 + λ5 and the matrix description is
λ1
λ3
λ4
λ5
λ6

 =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 −1 1 1 1



λ1
λ2
λ3
λ4
λ5

 .

Hence, it turns out that instead of the last line, we have to take the vector
(2,−1, 2, 2, 2) and then take the transpose. Indeed, doing that, we get

λ∗1
λ∗5
λ∗2
λ∗3
λ∗4

 =


λ1 + 2λ5
− λ5

λ2 + 2λ5
λ3 + 2λ5
λ4 + 2λ5

 =


1 0 0 0 2
0 0 1 0 −1
0 1 0 0 2
0 0 1 0 2
0 0 0 1 2



λ1
λ2
λ3
λ4
λ5

 .

{λ∗j}5j=1 are the values of the inclinations of the {Σ∗j}5j=1 with respect to Σ,
where Σ∗j is the reflection of Σj with respect to Σ5 for each j, 1 ≤ j ≤ 5.
Obviously {Σ∗j}5j=1 must satisfy the mutual inclination theorem. Indeed,
putting n = 3 and γ = −1 in (4.21), we have to check ¡Σ5k=1λ∗k¢2 −
3Σ5k=1(λ

∗
k)
2 = −6, provided

¡
Σ5k=1λk

¢2
− 3Σ5k=1(λk)2 = −6. We leave it to the reader to check that this is, in-
deed, correct.

Our aim in the next section is to give a “translation” of inclination
results proved earlier, to radii results. We have done that already by taking
a limiting process, namely, sending the center of the reference sphere Σ to
infinity. We now take a different procedure.

8 Further “translation” of inclination results to
results on radii

8.1 The linear theorem

Instead of a limiting case, we now take fixed spheres with mutual inclination
γ and let the sphere of reference Σ be arbitrary. We then equate coefficients
and find more detailed information about radii and coordinates of the given
fixed spheres. To make things more clear we start “translation” of the
linear theorem, i.e., Theorem 4.1. Hence, as in Theorem 4.1, let n + 1
spheres {Σj}n+1j=1 be given in Gn with mutual inclination γ, γ 6= 1, γ 6= − 1n ,
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Σn+2 be another sphere in Gn, with inclination µ with each of Σj , 1 ≤
j ≤ n + 1, satisfying (4.1). Σ is the sphere of reference. We denote by
aj = (aj1 , . . . , ajn) the centers of {Σj}n+1j=1 respectively, {Rj}n+1j=1 are the radii
of {Σj}n+1j=1 , r, y denote the radius and center of Σ where y = (y1, . . . , yn).
ρ, c denote the radius and center of Σn+2 for c = (c1, . . . , cn). With these
notations we have

λj =
r2 +R2j − (aj − y)2

2rRj
, 1 ≤ j ≤ n+ 1. (8.1)

λn+2 =
r2 + ρ2 − (c− y)2

2rρ
. (8.2)

By Theorem 4.1 we have from (4.2),

Σn+1j=1

©r2 +R2j − (aj − y)2

2rRj

ª
= (n+ 1)µ

¡r2 + ρ2 − (c− y)2)

2rρ

¢
.

As explained above, we fix {Σj}n+2j=1 and let Σ move freely, or in other words,
we consider r and {y1, . . . , yn} as n+ 1 free parameters.

Cancelling r from both sides in the above equality, we have,

Σn+1j=1

r2 +R2j − a2j − y2 + 2(a, y)

Rj
= (n+ 1)µ

r2 + ρ2 − (c− y)2

ρ
.

Equating coefficients on both sides, we start with the free term. Then

Σn+1j=1

¡
Rj −

a2j
Rj

¢
= (n+ 1)µ

¡
ρ− c2

ρ

¢
. (8.3)

Equating the coefficient of r2,

Σn+1j=1

1

Rj
=
(n+ 1)µ

ρ
. (8.4)

Similarly, equating the coefficient of y2, we get again the relation (8.4).
Equating the coefficient of {yk}nk=1 we have (using (aj , y) = Σnk=1ajkyk, (c, y) =
Σnk=1ckyk),

Σn+1j=1

ajk
Rj

=
(n+ 1)µck

ρ
, k = 1, 2, . . . , n. (8.5)

Summing up we have
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Theorem 8.1. Let n+1 spheres Σn+1j=1 be given in G
n with mutual inclination

γ, γ 6= 1, γ 6= −1
n . Denote by {Rj}n+1j=1 their radii and by aj = (aj1 , . . . , ajn)

their centers, respectively. Let Σn+2 be another sphere in Gn having in-
clination µ with each of {Σj}n+1j=1 where µ2 = 1+γn

1+n . Denote by ρ and
c = (c1, . . . , cn) the radius and center of Σ. Then we have (8.3), (8.4)
and (8.5).

It is of interest to give another proof of Theorem 8.1. For this aim we
need two simple observations. We put these observations as lemmas, since
they will be needed also at a later stage.

Lemma 8.1. Let Σ be a plane in Gn,Σ = {z, (z, α) = β} for α2 6= 0. Let
Σu be a sphere in Gn where Σu = {z − ua)2 = R2} and a,R ∈ C, a2 6= 0,
R 6= 0. Then λ(Σ0,Σu)

a2u2
→ 0 as u→∞.

Proof. The proof is immediate. Indeed, we have

λ(Σ0,Σu)

u2a2
=
(ua, α)− β

Rαu2a2
→ 0 as u→∞.

We also have

Lemma 8.2. Let Σ = {z, (z − a)2 = R2} be a sphere in Gn. Let Σk be the
plane zk = 0 for some k, 1 ≤ k ≤ n. Then for a = (a1, a2, . . . , ak, ak+1, . . . , anj)

λ(Σ,Σk) =
ak
R
, 1 ≤ k ≤ n. (8.6)

Proof. The proof follows at once. Indeed, the equation of Σk is (z, α) = 0
for α = (0, 0, . . . , 1, 0, . . . , ) where 1 stands at the kth plane. Hence

λ(Σ,Σk) =
(a, α)

Rα
=
Σnj=1ajαj

R
q
Σn1α

2
j

=
akαk
Rα

=
ak
R
,

Since α = α2 = 1.
Using the above two lemmas, we can now give another independent proof

of Theorem 8.1. We have to show (8.3), (8.4) and (8.5). (8.4) is an immediate
corollary of Theorem 4.1. Indeed, we use the limitation process (Lemma 4.1).

To prove (8.3) we separate the two cases: ρ2 − c2 6= 0, R2j − a2j 6= 0 for
all 1 ≤ j ≤ n+ 1, and the other case is a possibility where some (or all) of
them are zero.

We now reflect {Σj}n+2j=1 with respect to the unit sphere in G
n. Then the

new radii are Rj

a2j−R2j
for 1 ≤ j ≤ n + 1 and ρ

c2−ρ2 . Thus, (8.3) follows at

74



once from (8.4) and invariance property of inclination under reflection. In
the other case, namely, a2j −R2j = 0, or c

2− ρ2 = 0, we have to extend (8.4)
for the limiting case Rj =∞ for some j or ρ =∞, or both. For this aim we
go back to Theorem 4.1 and use it in addition to Lemma 4.1 and Lemma
8.1. Thus we start with (4.2), i.e., Σn+1k=1λk = (n + 1)µλn+2. For Σ, the
sphere of reference, we now take
Σ = {z, (z − ua)2 = R2, a2 6= 0, u a parameter}.
If Σk is a sphere, Σk = {z, (z − ak)

2 = R2k}, then λk =
R2k+R

2−(ua−ak)2
2RkR

.

If Σk is a plane, Σk = {z, (z, ηk) = βk}, then λk =
(ua,ηk)−βk

ηkR
.

For the case of a sphere , λk
−u2a2 → 1

2RkR
as u→∞.

For the case of a plane, λk
−u2a2 → 0 as u→∞.

If we agree to consider a plane as a sphere with radius ∞ (or bend zero),
we may say that λk

−n2a2 → 1
2RkR

also for the case of a plane. In any case,
the result (8.4) (and thus also (8.3)) is extended for the case where some of
the spheres (or reflected spheres) may be planes. It is left to prove (8.5).
But this follows at once from Σn+1k=1λj = (n + 1)µλn+2 where the sphere of
reference is Σk = {z, zk = 0} for some k, 1 ≤ k ≤ n. Indeed, by Lemma 8.2
we have

λj =
ajk
Rj

, 1 ≤ j ≤ n+ 1, λn+2 =
Ck

ρ
.

This ends the alternative proof of Theorem 8.1.

8.2 Translation of Theorems 4.2 and 4.3

We start with Theorem 4.2. Hence let Σj = {z, (z − aj)
2 = R2j}n+2j=1 where

{Σj}n+2j=1 satisfy the conditions of Theorem 4.2. Let Σ be a sphere of refer-
ence,
Σ = {z, (z − y)2 = r2}, y = (y1, . . . , y2). Thus

λj = λ(Σj ,Σ) =
R2j + r2 − (aj − y)2

2Rjr
=

R2j − a2j + (r
2 − y2) + 2(aj , y)

2Rjr
.

It will be convenient to put the notations:

r2 − y2 = 2yn+1, r2 = y2 + 2yn+1 = Σ
n
k=1y

2
k + 2yn+1; (8.7)

R2j − a2j
2Rj

= Pj0, 1 ≤ j ≤ n+ 2; (8.8)

1

Rj
= Pj,n+1, 1 ≤ j ≤ n+ 2; (8.9)
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ajk
Rj

= Pjk, 1 ≤ j ≤ n+ 2, aj = (aj1, . . . , ajn) 1 ≤ k ≤ n. (8.10)

We have from (8.7)-(8.10) and the expression for λj ,

λj =
1

γ
[Pj0 + Pjn+1yn+1 +Σ

n
k=1Pjkyk] =

1

γ

£
Pj0 +Σ

n+1
k=1Pjkyk

¤
, 1 ≤ j ≤ n+2.

>From Theorem 4.2 we get (multiplying by γ2 = 2yn+1 + y2)),¡
Σn+1j=1

£
Pj0 +Σ

n+1
k=1Pjkyk

¤¢2 − ¡n+ 1

γ

¢
Σn+1j=1

£
Pj0 +Σ

n+1
k=1Pjkyk

¤2
=

¡
n+

1

γ

¢
(1− γ)

©¡
Pn+2 +Σ

n+1
k=1Pn+2,kyk

¢2 − ¡2yn+1 +Σnk=1y2k¢ª.
We now change to homogeneous coordinates, i.e., we replace yk by

yk
y0
for

1 ≤ k ≤ n. Then£
Σn+1j=1Σ

n+1
k=0(Pjkyk)

¤2 − ¡n+ 1

γ

¢
Σn+1j=1

¡
Σn+1k=0Pjkyk

¢2
=

¡
n+

1

γ

¢
(1− γ)

©¡
Σn+1k=0Pn+2,kyk

¢2 − 2yn+1y0 −Σnk=1y2kª.
Thus

Σn+1k,c=0

¡
Σn+1j=1PjkΣ

n+1
j=1Pjc

¢
ykyc −

¡
n+

1

γ

¢
Σn+1k,c=0

¡
Σn+1j=1PjkPjc

¢
ykyc

=
¡
n+

1

γ

¢
(1− γ)

©¡
Σn+1k,c=0Pn+2,kPn+2,cykyc − 2yn+1y0 − Σnk=1y2k

ª
.

Since the sphere of reference is arbitrary, it follows that the center’s coordi-
nates and radius of this sphere may be considered as free parameters. Hence
it follows at once that (y0, y1, . . . , yn+1) may be considered as free parame-
ters and we can equate coefficients on both sides. We differentiate between
various cases.
(I) 1 ≤ k, c ≤ n, k 6= c

Σn+1j=1PjkΣ
n+1
j=1Pjc −

¡
n+

1

γ

¢
Σn+1j=1PjkPjc

=
¡
n+

1

γ

¢
(1− γ)Pn+2,kPn+2,c.

>From (8.10) we get

Σn+1j=1

ajk
Rj
Σn+1j=1

ajc
Rj
− ¡n+ 1

γ

¢
Σn+1j=1

ajkajc
R2j

(8.11)

=
¡
n+

1

γ

¢
(1− γ)

an+2,kan+2,c
γ2n+2

, k 6= c

1 ≤ k, c ≤ n.
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(II) 1 ≤ k ≤ n, c = n+ 1

Σn+1j=1PjkΣ
n+1
j=1Pj,n+1 −

¡
n+

1

γ

¢
Σn+1j=1PjkPj,n+1

=
¡
n+

1

γ

¢
(1− γ)Pn+2,kPn+2,n+1.

>From (8.9) and (8.10) we have

Σn+1j=1

ajk
Rj
Σn+1j=1

1

Rj
− ¡n+ 1

γ

¢
Σn+1j=1

ajk
R2j

(8.12)

=
(n+ 1

γ )(1− γ)an+2,k

R2n+2
, 1 ≤ k ≤ n.

(III) k = c, 1 ≤ k ≤ n¡
Σn+1j=1Pjk

¢2 − ¡n+ 1

γ

¢
Σn+1j=1P

2
jk =

¡
n+

1

γ

¢
(1− γ)(P 2n+2,k − 1).

Using (8.10) we have

¡
Σn+1j=1

ajk
Rj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

a2jk
R2j

(8.13)

=
¡
n+

1

γ

¢
(1− γ)

¡a2n+2,k
R2n+2

− 1¢, 1 ≤ k ≤ n.

(IV) k = c = n+ 1¡
Σn+1j=1Pj,n+1

¢2 − ¡n+ 1

γ

¢
Σn+1j=1P

2
j,n+1 =

¡
n+

1

γ

¢
(1− γ)P 2n+2,n+1

and using (8.9),

¡
Σn+1j=1

1

Rj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

R2j
=
¡
n+

1

γ

¢
(1− γ)

1

R2n+2
. (8.14)

This ends all cases arising from 1 ≤ k, c ≤ n + 1. We are left with cases
involved with k or c (or both) zero.
(V) k = c = 0 ¡

Σn+1j=1Pj0
¢2 − ¡n+ 1

γ

¢
(1− γ)P 2n+2,0.
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Putting the value of Pj0 by (8.8),

¡
Σn+1j=1

R2j − a2j
Rj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

¡R2j − a2j
Rj

¢2 (8.15)

=
¡
n+

1

γ

¢
(1− γ)

¡R2n+2 − a2n+2
Rn + 2

¢
.

(VI) c = 0, 1 ≤ k ≤ n

Σn+1j=1PjkΣ
n+1
j=1Pj0 −

¡
n+

1

γ

¢
Σn+1j=1PjkPj0 =

¡
n+

1

γ

¢
(1− γ)Pn+2,kPn+2,0,

and using (8.8) and (8.10),

¡
Σn+1j=1

ajk
Rj

¢
Σn+1j=1

¡R2j − a2j
Rj

¢− ¡n+ 1

γ

¢
Σn+1j=1

ajk
R2j
(R2j − a2j ) (8.16)

=
¡
n+

1

γ

¢
(1− γ)

an+2,k
R2n+2

(R2n+2 − a2n+2).

(VII) c = 0, k = n+ 1

Σn+1j=1Pj,n+1Σ
n+1
j=1Pj0 −

¡
n+

1

γ

¢
Σn+1j=1Pj,n+1Pj0

=
¡
n+

1

γ

¢
(1− γ)[Pn+2,n+1Pn+1,0 − 1]

and, from (8.8) and (8.9),

Σn+1j=1

1

Rj
Σn+1j=1

¡R2j − a2j
2Rj

¢− ¡n+ 1

γ

¢
Σn+1j=1

1

2R2j
(R2j − a2j ) (8.17)

=
¡
n+

1

γ

¢
(1− γ)

£ 1

2R2n+2
(R2n+2 − a2n+2)− 1

¤
.

Analysis of the above seven cases shows that there are in fact two differ-
ent groups. If k = c, (i.e., cases III, IV and V), the results are elementary
consequences from the previous theorem. The situation is different for the
other four cases. In fact, the information in these four other cases leads us
to guess a new interesting more general theorem that will be proved at a
later stage. To be more specific we start with case (III). We first choose
Σ = {z, zk = 0} for some k, 1 ≤ k ≤ n, as the sphere of reference, and we
use Lemma 8.2. Then we have λj = λ(Σj ,Σ) =

ajk
Rj

, 1 ≤ j ≤ n+ 2, and we
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get from (8.13)
¡
Σn+1j=1λj

¢2 − ¡n + 1
γ

¢
Σn+1j=1λ

2
j =

¡
n + 1

γ

¢
(1 − γ)(λ2n+2 − 1),

i.e., we are back in Theorem 4.2. Continuing with case IV, i.e., (8.14), we
see that we have the well known radii version of Theorem 4.2.

Case V is similar to case IV. Indeed, (8.15) is again the radii version
of Theorem 4.2, but after reflection with respect to the unit sphere in Gn.
(Compare with Theorem 8.1 and its second proof.)

We now consider case I. Using Lemma 8.2 for Σ = {z, zk = 0}, Σ0 =
{z, zc = 0} we have from (8.11),

¡
Σn+1j=1λj

¢
Σn+1j=1 (λ

0
j)−

¡
n+

1

γ

¢
Σn+1j=1λjλ

0
j =

¡
n+

1

γ

¢
(1− γ)λn+2λ

0
n+2

λj = λ(Σj ,Σ), λ0j = λ(Σj ,Σ
0), 1 ≤ j ≤ n+ 2. (8.11’)

Note that Σ is orthogonal to Σ0.
Comparing (8.110) with Theorem 4.2, one is naturally led to guess that

one more general relation might exist, namely,

Σn+1j=1λjΣ
n+1
j=1λ

0
j −

¡
n+

1

γ

¢
Σn+1j=1λjλ

0
j (8.18)

=
¡
n+

1

γ

¢
(1− γ)

¡
λn+2λ

0
n+2 − λ(Σ,Σ0)

¢
for λj = λ(Σj ,Σ), λ0j = λ(Σj ,Σ

0), 1 ≤ j ≤ n + 2. Indeed, if Σ = Σ0, we
are back in Theorem 4.2, as λ(Σ,Σ0) = 1. If Σ is orthogonal to Σ0, we have
(8.110).

It turns out that this guess fits the other three remaining cases as well.
Indeed, the results of cases II, VI and VII follow from (8.110). Later on we
present (8.18) in the form of a theorem. In the meantime we present the
above more particular results.

Theorem 8.2. Let n+ 1 spheres Σj = {z, (z − aj)
2 = R2j}, 1 ≤ j ≤ n+ 1

be given in Gn. Assume that they have a mutual inclination γ, γ 6= 0, γ 6=
1, γ 6= − 1n . Let Σn+2 = {zj(z − an)

2 = R2n+2} be another sphere in Gn

which is orthogonal to each of {Σj}n+2j=1 . Denote aj = (aj1, aj2, . . . , ajn) for
1 ≤ j ≤ n+2. Also denote by {R0j}n+2j=1 the radii of reflected spheres {Σ0j}n+2j=1

with respect to the unit sphere in Gn. Then (8.11) (or, alternatively, the
more general form (8.110) is satisfied.

Putting λj =
ajk
Rj
for some k, 1 ≤ k ≤ n, we also have

Σn+1j=1λjΣ
n+1
j=1

1

Rj
− ¡n− 1

γ

¢
Σn+1j=1

λj
Rj

=
¡
n+

1

γ

¢
(1− γ)

λn+2
Rn+2

. (8.12’)

79



Also

Σn+1j=1λjΣ
n+1
j=1

1

R0j
− ¡n− 1

γ

¢
Σn+1j=1λj

1

R0j
=
¡
n+

1

γ

¢
(1−γ)λn+2 · 1

R0n+2
, (8.16’)

Σn+1j=1

1

Rj
Σn+1j=1

1

R0j
− ¡n+ 1

γ

¢
Σn+1j=1

1

Rj

1

R0j
=
¡
n+

1

γ

¢
(1− γ)

£ 1

Rn+2

1

R0n+2
+ 2
¤
.

(8.17’)

Proof. In fact, almost everything is proved above. We just note that

R0j =
a2j−R2j
Rj

. That is why the plus sign appears in (8.170). We also note that
1
R0j
may be equal to zero (in the case a2j −R2j = 0) (see Theorem 8.1 and its

second proof). Note also that only four of the seven cases were presented in
the statement of the theorem, as the other three cases (i.e., k = c) are most
elementary (this was explained earlier) and essentially presented previously.
As mentioned above, at a later stage we will prove a more general theorem
that will imply Theorem 8.2. Indeed, this will imply an independent proof
of (8.110), (8.120), (8.160) and (8.170).

Our next aim is to present a similar theorem to Theorem 8.2, arising
from Theorem 4.3 instead of from Theorem 4.2. In other words, we now
consider the case of n+2 spheres with mutual inclination γ instead of n+1
spheres with mutual inclination γ, and an additional orthogonal sphere to
these n + 1 spheres. For this aim we start with Theorem 4.3, i.e., with
(4.21) and imitate what we did earlier in order to prove Theorem 8.2. We
use, again, the same ideas and the same notation, i.e., (8.7)-(8.10).

We then get

Σn+1k,c=0

¡
Σn+2j=1PjkΣPjc

¢
ykyc −

¡
n+ 1 +

1

γ

¢
Σn+1k,c=0

¡
Σn+2j=1PjkPjc

¢
ykyc

=
¡
n+ 1 +

1

γ

¢
(γ − 1)£2yn+1y0 +Σnk=1y2k¤.

As in the previous proof, here too we get seven different cases.

(I) 1 ≤ k, c ≤ n, k 6= c,

Σn+2j=1

ajk
Rj
Σn+2j=1

ajc
Rj
− ¡n+ 1 + 1

γ

¢
Σn+2j=1

ajk
Rj

ajc
Rc

= 0. (8.19)

(II) 1 ≤ k ≤ n, c = n+ 1,

Σn+2j=1

ajk
Rj
Σn+2j=1

1

Rj
− ¡n+ 1 + 1

γ

¢
Σn+2j=1

ajk
Rj

1

Rj
= 0. (8.20)
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(III) 1 ≤ k, c ≤ n, k = c,¡
Σn+2j=1

ajk
Rj

¢2 − ¡n+ 1 + 1

γ

¢
Σn+1j=1

a2jk
R2j

=
¡
n+ 1 +

1

γ

¢
(γ − 1). (8.21)

(IV) k = c = n+ 1,¡
Σn+1j=1

1

Rj

¢2 − ¡n+ 1 + 1

γ

¢
Σn+2j=1

1

R2j
= 0. (8.22)

(V) k = 0, c = 0,¡
Σn+2j=1

¡R2j − a2j
Rj

¢¢2 − ¡n+ 1 + 1

γ

¢
Σn+2j=1

¡R2j − a2j
Rj

¢2
= 0. (8.23)

(VI) c = 0, 1 ≤ k ≤ n,¡
Σn+2j=1

ajk
Rj

¢¡
Σn+2j=1

R2j − a2j
Rj

¢− ¡n+ 1 + 1

γ

¢
Σn+2j=1

ajk
Rj

¡R2j − a2j
Rj

¢
= 0. (8.24)

(VII) c = 0, k = n+ 1,

Σn+2j=1

¡R2j − a2j
2Rj

¢
Σn+2j=1

1

Rj
− ¡n+ 1 + 1

γ

¢
Σn+2j=1

R2j − a2j
2Rj

1

Rj
(8.25)

=
¡
n+ 1 +

1

γ

¢
(γ − 1).

Like before, cases III, IV and V are not essentially new. We present the four
other cases in the form of a theorem.

Theorem 8.3. Let n + 2 spheres Σj = {z, (z − aj)
2 = R2j}, 1 ≤ j ≤ n + 2

be given in Gn. Assume that all spheres have mutual inclination γ, γ 6= 1.
Denote aj = (aj1, . . . , ajn), 1 ≤ j ≤ n+2. Also denote by {R0j}n+2j=1 the radii
of reflected spheres {Σ0j}n+2j=1 with respect to the unit sphere. Then we have
(8.19), (8.20), and¡

Σn+2j=1

ajk
Rj

¢
Σn+2j=1

1

R0j
− ¡n+ 1 + 1

γ

¢
Σn+2j=1

ajk
Rj

1

R0j
, 1 ≤ k ≤ n, (8.24’)

Σn+2j=1

1

Rj
Σn+2j=1

1

R0j
− ¡n+ 1+ 1

γ

¢
Σn+2j=1

1

Rj

1

R0j
,= 2

¡
n+ 1+

1

γ

¢
(1− γ). (8.25’)

The proof is given above. Again, note that the sign in (8.180) is reversed,
as R0j =

Rj

a2j−R2j
. Like before, here too we have a more general result involved

with two spheres of references instead of one, which will be presented later
and will contain Theorem 8.3 as a special case.
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9 Two spheres of references: Generalization of
Theorems 4.2 and 4.3

9.1 Generalization of Theorem 4.2

As explained in the previous section, in view of the results there (i.e., The-
orems 8.2 and 8.3), it is natural to conjecture a generalization of Theorems
4.2 and 4.3, where two spheres of reference replace the one sphere. We first
start with an extension of Theorem 4.2.

Theorem 9.1. Let n+1 spheres {Σj}n+1j=1 be given in Gn with mutual incli-
nation γ 6= 0, γ 6= 1, γ 6= − 1n . Let Σn+2 be another sphere which is orthogonal
to each of {Σj}n+1j=1 . Let Σ,Σ

0 be two arbitrary spheres of reference. Denote
by {λj}n+2j=1 and {µj}n+2j=1 the inclinations of {Σj}n+2j=1 with Σ,Σ

0 respectively.
Also denote by λ(Σ,Σ0) the inclination between Σ and Σ0. Then¡

Σn+1k=1λk
¢¡
Σn+1k=1µk

¢− ¡n+ 1

γ

¢
Σn+1k=1λkµk (9.1)

=
¡
n+

1

γ

¢
(1− γ)

£
λn+2µn+2 − λ(Σ,Σ0)

¤
.

Proof. The proof is very similar to the proof of the particular case Σ = Σ0,
i.e., Theorem 4.2. The notations introduced in the proof of Theorem 4.2
will be used here and the same is true for the ideas of the proof. Hence we
follow again the model of Coxeter [8] (as in Theorem 4.1 and Theorem 4.2)
and consider the plane Σn+1j=1 zj = 1 in Gn+1. We may assume by Theorem
3.2 that all radii of {Σj}n+1j=1 are equal. The common value is denoted by
R. Their centers are located at (1, 0 · · · ), (0, 1, 0 · · · ), . . . , (0, 0 · · · 1). As
in (4.3) we have γ = 1 − 1

R2
, 1 − γ = 1

R2
. The radius of Σn+2 is again

denoted by ρ, and its center is necessarily at
¡
1

n+1 , . . . ,
1

n+1

¢
. As before,

the center of Σ is denoted by (y1, . . . , yn+1) and its radius is denoted by
r. For the other sphere of reference Σ0 we now put the notation τ for its
radius and t = (t1, . . . , tn+1) for its center. We recall the orthogonality
condition (4.12), i.e., ρ2 + R2 − 4

n+1 = 0. We use, again, the notation
a = R2 − ρ2 − 1

n+1 , b = y2 − r2 − R2 (see (4.13)). In addition, we now put
the notation

c = t2 − τ2 −R2. (9.2)

Exactly as in the proof of Theorem 4.2 we now have (see (4.14) and (4.15)),

λk = (2yk−1−b) 1
2rR

, µk = (2tk−1−c)
1

2τR
, 1 ≤ k ≤ n+1; (9.3)
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λn+2 =
−b− a

2rρ
, µn+2 =

−c− a

2τρ
. (9.4)

We also have

λ(Σ,Σ0) =
r2 + τ2 − y2 − t2 + 2(y, t)

2rτ
. (9.5)

Using Σn+1k=1yk = 1, it follows easily from (9.3) that

¡
Σn+1k=1λk

¢¡
Σn+1k=1µk

¢
=
((n+ 1)b+ (n− 1))((n+ 1)c+ (n− 1))

4rτR2
(9.6)

(compare with (4.16) for λk = µk and b = c). Similarly,

Σn+1k=1λkµk =
(n− 3) + (n− 1)b+ (n− 1)c+ (n+ 1)bc+ 4(t, y)

4rτR2
(9.7)

(compare with (4.17) for b = c and (y, t) = y2). >From (9.4), using (4.19),

λn+2µn+2 =

¡
b+ 1+γ

1−γ
¢¡
c+ 1+γ

1−γ
¢

4rτp2
. (9.8)

Using 1
R2
= 1− γ, (9.5), (9.6), (9.7) and (9.8) we get that (9.1) is reduced

to ¡
(n+ 1)b+ (n− 1)¢¡(n+ 1)c+ (n− 1)¢
−¡n+ 1

γ

¢£
(n− 3) + (n− 1)b+ (n− 1)c+ (n+ 1)bc+ 4(y, t)¤

=
¡
n+

1

γ

¢£¡b+ 1+γ
1−γ

¢¡
c+ 1+γ

1−γ
¢

ρ2
− 2¡r2 + τ2 − y2 − t2 + 2(y, t)

¢¤
.

>From ρ2 +R2 − n
n+1 = 0, R2 = 1

1−γ , we easily get

1

ρ2
=
(n+ 1)(1− γ)

−(nγ + 1) . (9.9)

Also from b = y2 − r2 −R2, c = t2 − τ2 −R2, and R2 = 1
1−γ , we have

b+ c = t2 + y2 − r2 − τ2 − 2

1− γ
. (9.10)
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Putting (9.9) and (9.10) in the above equation, we get¡
(n+ 1)b+ (n− 1)¢¡(n+ 1)c+ (n− 1)¢− ¡n+ 1

γ

¢
£
(n− 3) + (n− 1)b+ (n− 1)c+ (n+ 1)bc+ 4(y, t)¤

=
¡
n+

1

γ

¢£¡b+ 1+γ
1−γ

¢¡
c+ 1+γ

1−γ
¢
(n+ 1)(1− γ)

−(nγ + 1)
+2
¡
b+ c+

2

1− γ
− 2(y, t)¢¤.

Comparing coefficients of bc, b, c, (y, t), this is easily seen to be an identity
for each γ. This ends the proof of the theorem.

9.2 Generalization of Theorem 4.3

Theorem 9.2. Let {Σj}n+2j=1 be n + 2 spheres in Gn having mutual incli-
nation γ 6= 1. Let Σ,Σ0 be two spheres of reference in Gn. Denote by
{λj}n+2j=1 , {µj}n+2j=1 the inclinations of {Σj}n+2j=1 with Σ and Σ

0 respectively.
Also, λ(Σ,Σ0) denotes the inclination between Σ and Σ0. Then¡

Σn+2k=1λk
¢¡
Σn+2k=1µk

¢− ¡n+ 1 + 1

γ

¢
Σn+2k=1λkµk (9.11)

=
¡
n+ 1 +

1

γ

¢
(γ − 1)λ(Σ,Σ0).

Proof. Theorem 9.2 follows from Theorem 9.1 in exactly the same way
as Theorem 4.3 follows from Theorem 4.2. All considerations are identical
and thus the details are omitted.

We note that, alternatively, we can give a direct proof as for Theorem
9.1 (the same is true for Theorem 4.3).

10 Complex approach to hyperbolic transforma-
tion

10.1 Poincaré extension and hyperbolic transformation

We use the notations introduced in section 5. We started there with the
sphere {z,Σnj=1z2j = R2, R = i} and considered the “projected” sphere
Σnj=1x

2
j + (ix0)

2 = i2 = −1, or 1 + Σnj=1x2j = x20. In other words, the
hyperboloid 1 + Σnj=1x

2
j = x20 is viewed as a projected sphere in Gn+1. We
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then considered the sphere centered at (µ1, . . . , µn, iµ0) with radius R, i.e.,
Σnj=1(xj −µj)

2− (x0−µ0)
2 = R2 is another hyperboloid which is viewed as

a projected sphere in Gn+1 from a sphere with center (µ1, . . . , µn, iµ0) and
a real radius R. We then found the condition of orthogonality of these two
spheres (i.e., (5.7), or R2 − 1 = µ2 − µ20 for µ

2 = Σnj=1µ
2
i ).

Later, in Lemma 5.1 we proved that if two such projected spheres (see
(5.10) are both orthogonal to the sphere S mentioned above, then the inclina-
tion between these two spheres is invariant under hyperbolic transformation
of these two spheres (or hyperboloids) onto the hyperbolic space ∆n. Using
the orthogonality conditions for both spheres, we showed (see (5.3)) that the
inclination λ satisfied λ = 1+(µ,η)−µ0η0

ρR , which is the same as the inclination

between the images Σnj=1
¡
yj− µj

1+µ0

¢2
=
¡

R
1+µ0

¢2
,Σnj=1

¡
yj− ηj

1+η0

¢
=
¡ ρ
1+η0

¢2
(see (5.17) and (5.170)).

We now propose a different way to look at these issues. Since S is orthog-
onal to the two mentioned spheres, it is clear that if we use a Möbius trans-
formation to map S on to zn+1 = 0, the two spheres will be mapped onto
two orthogonal spheres to zn+1 = 0. Indeed, this is assured by the invariance
property of the inclination via a Möbius transformation. it is only natural to
expect that the Poincaré extension of the two spheres mentioned above (i.e.,
(5.17) and (5.170) are exactly these two orthogonal spheres. This is indeed
correct, as we verify below. Of course, this gives a new proof of Lemma
5.1. But not less important, it gives a new look at hyperbolic transforma-
tion. Indeed, we may view this transformation as a Möbius transformation
in Gn+1 that maps S onto zn+1 = 0.

10.2 A Möbius map from S onto zn+1 = 0

Theorem 10.1. Define in Gn+1, a = (0, . . . , 0,−i) and

a− z = 2
(w − a)

(w + a)2
. (10.1)

Then the sphere w2 = −1 = i2 is mapped onto zn+1 = 0. Also define in
Gn+1 the sphere

(w − µ̃)2 = R2, µ̃ = (µ1, . . . , µn, iµ0) (10.2)

µ̃2 = µ2 − µ20 = Σ
n
k=1µ

2
k − µ20.

Assume also that R2 + (i)2 = R2 − 1 = µ̃2 (orthogonality condition). Then

Σnj=1
¡
zj −

µj
1 + µ0

¢2
=
¡ R

1 + µ0

¢2
if µ0 6= −1, (10.3)
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Σnj=1zjµj + 1 = 0 if µ = −1. (10.4)

Proof. To prove the first part, note that a2 = −1. Hence, from w2 = −1
we get−1 = (w−a+a)2 = (w−a)2+a2+2(w−a, a) = (w−a)2−1+2(w−a, a).
Hence 1 + 2

¡
w−a
(w−a)2 , a

¢
= 0. From (10.1) this means that 1 + (a− z, a) = 0

or 1 + (a, a) − (z, a) = 0. But (a, a) = a2 = −1 now yields (z, a) = 0 or
zn+1 = 0. This ends the proof of the first part.

To prove the second part, we start with

(w − µ̃)2 = R2, µ̃ = (µ1, . . . , µn, iµ0), µ̃2 = µ2 − µ20.

(w − a+ a− µ̃)2 = R2, (w − a)2 + (a− µ̃)2 + 2(w − a, a− µ̃) = R2.

Hence, (w−a)2+2(w−a, a−µ̃) = R2−a2−µ̃2+2(a, µ̃) = R2+1−µ̃2+2(a, µ̃)
= 2+ 2(a, µ̃) where the orthogonality condition R2− µ̃2 = 1 has been used.
But (a, µ̃) = µ0 as a = (0, 0, . . . , 0,−i) and µ̃ = (µ1, µ2, . . . , iµ0). Putting
this in the above, it follows that (w−a)2+2(w−a, a− µ̃) = 2(1+µ0). Thus

1 + 2
¡ w − a

(w − a)2
, a− µ̃

¢
=
2(1 + µ0)

(w − a)2
.

Using (10.1), this implies 1 + (a− z, a− µ̃) = 2(1+µ0)
(w−a)2 . Again, by (10.1), we

have (a−z)2 = 4(w−a)2
w−a)4 = 4(w − a)2. Hence, 1+(a−z, a−µ̃) = (1+µ0)(a−z)2

2 or

1+(a, a−µ̃)−(z, a−µ̃) = 1+µ0
2 (a−z)2. We have (a, a−µ̃) = a2−(a, µ̃) = −1−

µ0. This implies −µ0−(z, a)+(z, µ̃) = 1+µ0
2 (z−a)2 = 1+µ0

2 (z2−2(a, z)+a2)
or −µ0− (z, a)+(z, µ̃) = 1+µ0

2 (z2−a)− (a, z)(1+µ0). Cancelling −(z, a) on
both sides and using (z, µ̃) = Σnk=1zkµk+iµ0zn+1, we have −µ0+Σnk=1zkµk+
iµ0zn+1 = 1+µ0

2 (z2 − 1)
−µ0(a, z). But (a, z) = −izn+1, and thus iµ0zn+1 is cancelled with−µ0(a, z).
Hence −µ0+Σnk=1zkµk =

¡1+µ0
2

¢
(z2−1) or −2µ0+2Σnk=1zkµk = (1+µ0)z2−

1− µ0. We get
(1 + µ0)z

2 + (µ0 − 1)− 2(z, µ) = 0. (10.5)

If µ0 6= −1 we divide by 1 + µ0 and then z2 = −2(z,µ)
1+µ0

= 1−µ0
1+µ0

. Hence,¡
z − µ

1+µ0

¢2
= 1−µ0

1+µ0
+ µ2

(1+µ0)
2 =

1−µ20+µ2
(1+µ0)

2 . But 1 − µ20 + µ2 = 1 + µ̃2 = R2

by the orthogonality condition. Thus
¡
z− µ

1+µ0

¢2
=
¡

R
1+µ0

¢2 which confirms
(10.3). This ends the case µ0 6= −1 in (10.5). If µ0 = −1, then (10.5) implies
−2− 2(z, µ) = 0, which is (10.4). This ends the proof of the theorem.

Note that both generalized spheres in (10.3) and (10.4) are orthogonal
to zn+1 = 0, as expected. Indeed, the sphere in (10.3) is centered at (µ1,
µ2, . . . , µn, 0), and thus is orthogonal to zn+1 = 0. The same is true for the
plane Σnj=1zjµj = −1 appearing in (10.4).
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11 Some additional aspects of the hyperbolic
space ∆n

11.1 Exponential hyperbolic radius

In section 5 (see also section 10) we pointed out that the limitation R < 1 is
somewhat artificial. More specifically, R = tanhβ, where β is the hyperbolic
radius, implies that R < 1 (see (5.8)). On the other hand, there is not any
limitation of this sort before applying the hyperbolic transformation.

This naturally raises the question whether one can extend the definition
of R to avoid this limitation. This is our first aim in the present section.

Let Σnj=1(xj − aj)
2 = ρ2 be a sphere in Rn. We denote, as usual, by

ρ0 = ρ
a2−ρ2 the radius of the sphere after inversion with respect to the unit

sphere. We then have

Definition 11.1. The “Exponential hyperbolic radius” R is defined by

1

R
=
1

2

¡1
ρ
− 1

ρ0
¢
. (11.1)

To justify this definition, we now prove

Theorem 11.1. Let Σnj=1(xi − ai)
2 = ρ2 be a sphere in ∆n. Denote by β

its hyperbolic radius. Also denote R = tanhβ. Then (11.1) is satisfied.

Proof. We have for the hyperbolic radius β,

β =
1

2
cn

·
1 + x

1− x

¸a+ρ
a−ρ

for a2 = Σnj=1a
2
j .

Then

β =
1

2
cn

·
1 + (ρ+ a)

1− (ρ+ a)
· 1− (a− ρ)

1 + (a− ρ)

¸
=
1

2
cn
(1 + ρ)2 − a2

(1− ρ)2 − a2
.

Hence, for R = tanhβ = e2β−1
e2β+1

we get

R =
¡(1 + ρ)2 − a2

(1− ρ)2 − a2
− 1¢¡(1 + ρ)2 − a2

(1− ρ)2 − a2
+ 1
¢−1

.

Hence,

R =
(1 + ρ)2 − (1− ρ)2

(1 + ρ)2 + (1− ρ)2 − 2a2 =
4ρ

2(1 + ρ2)− 2a2 =
2ρ

1 + ρ2 − a2
.
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This implies

1

R
=
1 + ρ2 − a2

2ρ
=
1

2

¡1
ρ
− (a

2 − ρ2)

ρ

¢
=
1

2

¡1
ρ
− 1

ρ0
¢
.

Hence (11.1) is confirmed and this ends the proof of the theorem.
It is only natural now to make

Definition 11.2. Given the sphere Σnj=1(xj − aj)
2 = ρ2 in Rn, we define

the hyperbolic radius of it by

β =
1

2
cn
1 +R

1−R
(11.2)

where R is the exponential hyperbolic radius defined in (1.1).

Note that if the sphere is in ∆n, then β is the ordinary hyperbolic radius
by (5.19) and Theorem 11.1. Indeed, R = tanhβ is equivalent to (11.3).

We now prove the following generalization of the Mauldon hyperbolic
inclination theorem (Theorem 5.1).

Theorem 11.2. Let n + 2 spheres {S1, . . . , Sn+2} be given in Rn. Denote
by {βj}n+2j=1 the (generalized) hyperbolic radii as defined above.

Assume further that {Sj}n+2j=1 have mutual inclination γ 6= 0, γ 6= 1.
Then¡

Σn+2j=1

1

tanhβj

¢2−¡n+ 1
γ
+1
¢
Σn+2j=1

1

tanh2βj
=
¡
n+1+

1

γ

¢
(γ−1). (11.3)

Proof. We have to show for 1
Rj
= 1

2

¡
1
ρj
− 1

ρ0j

¢
= 1

tanhβj
that

¡
Σn+2j=1

1

2

¡ 1
ρj
− 1

ρ0j

¢¢2 − ¡
n+ 1 +

1

γ

¢
Σn+2j=1

¡1
2

¡ 1
ρj
− 1

ρ0j

¢¢2 (11.4)

=
¡
n+ 1 +

1

γ

¢
(γ − 1).

For this aim we use Theorem 4.4 and Theorem 8.3. >From (4.22) we get¡
Σn+2j=1

1

ρj

¢2 − ¡n+ 1 + 1

γ

¢
Σn+2j=1

1

ρ2j
= 0, (11.5)

¡
Σn+2j=1

1

ρ0j

¢2 − ¡n+ 1 + 1

γ

¢
Σn+2j=1

1

(ρ0j)2
= 0. (11.6)

88



>From (8.180) we have

Σn+2j=1

1

ρj
Σn+2j=1

1

ρ0j
− ¡n+ 1 + 1

γ

¢
Σn+2j=1

1

ρj

1

ρ0j
= 2

¡
n+ 1 +

1

γ

¢
(1− γ). (11.7)

>From (11.5),

1

4

¡
Σn+2j=1

1

ρj

¢2
+
1

4

¡
Σn+2j=1

1

ρ0j

¢2 − 1
2
Σn+2j=1

1

ρj
Σn+2j=1

1

ρ0j

=
(n+ 1 + 1

γ )

4

"
Σn+2j=1

1

ρj

1

ρ2j
+Σn+2j=1

1

(ρ0j)2
− 2Σn+2j=1

1

ρjρ
0
j

#
=

¡
n+ 1 +

1

γ

¢
(γ − 1).

>From (11.6) and (11.7) this is reduced to

−1
2
Σn+2j=1

1

ρj
Σn+2j=1

1

ρ0j
+

¡
n+ 1 + 1

γ

¢
2

Σn+2j=1

1

ρj

1

ρ0j
=
¡
n+ 1 +

1

γ

¢
(γ − 1).

But this is equivalent to (11.7) and thus the confirmation of (11.3) is estab-
lished, which ends the proof of Theorem 11.2.

It is worthwhile to point out that the above method gives not only a gen-
eralization of Theorem 5.1 (i.e., the Mauldon complex hyperbolic inclination
theorem), but also an alternative proof of it.

We now have

Theorem 11.3. Let n + 1 spheres {Sj}n+1j=1 be given in Rn with mutual
inclination γ 6= 0, γ 6= 1, γ 6= − 1n . Let Sn+2 be another sphere in Rn

which is orthogonal to each of {Sj}n+1j=1 . Denote by {βj}n+2j=1 the (generalized)
hyperbolic radii of {Sj}n+2j=1 . Then¡

Σn+1j=1

1

tanhβj

¢2 − ¡
n+

1

γ

¢
Σn+1j=1

1

tanh2βj
(11.8)

=
¡
n+

1

γ

¢
(1− γ)

¡ 1

tanh2βn+2
− 1¢.

Proof. The proof is very similar to the proof of the previous theorem.
We use (8.14) (replacing the notation Rj by ρj),¡

Σn+1j=1

1

ρj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

ρ2j
=
¡
n+

1

γ

¢
(1− γ)

1

ρ2n+2
, (11.9)
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¡
Σn+1j=1

1

ρ0j

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

(ρ0j)2
=
¡
n+

1

γ

¢
(1− γ)

1

(ρ0n+2)2
. (11.10)

We also use Theorem 8.2. From (8.170) we get

Σn+1j=1

1

ρj
Σn+1j=1

1

ρ0j
− ¡

n+
1

γ

¢
Σn+1j=1

1

ρj

1

ρ0j
(11.11)

=
¡
n+

1

γ

¢
(1− γ)

·
1

ρn+2

1

ρ0n+2
+ 2

¸
.

In view of (11.8) we have to show for 1
Rj
= 1

2

¡
1
ρj
− 1

ρ0j

¢
= 1

tanhβj
that

Σn+1j=1

¡1
2

¡ 1
ρj
− 1

ρ0j

¢¢2 − ¡
n+

1

γ

¢
Σn+1j=1

¡1
2

¡ 1
ρj
− 1

ρ0j

¢¢2
=

¡
n+

1

γ

¢
(1− γ)

·¡1
2

¡ 1

ρn+2
− 1

ρ0n+2

¢¢2 − 1¸ .
Putting (11.9) and (11.10) in the above, we are left with

−1
2
Σn+1j=1

1

ρj
Σn+1j=1

1

ρ0j
+

(n+ 1
γ )

2
Σn+1j=1

1

ρj

1

ρ0j

=
¡
n+

1

γ

¢
(1− γ)

£−1
2

1

ρn+1

1

ρ0n+2
− 1¤.

But this is equivalent to (11.11) and thus (11.8) is confirmed. This completes
the proof of the theorem.

11.2 An extension of Theorem 11.3

We start with a slightly different approach to the concept of exponential
hyperbolic radius.

Let S = {y,Σnj=1(yj − aj)
2 − ρ2}. We define {ηj}n1 , η0, R to satisfy

ρ =
R

1 + η0
, aj =

ηj
1 + η0

, η2 − η20 = R2 − 1, 1 ≤ j ≤ n. (11.12)

Compare this with (5.7).
We have

a2 =
η2

(1 + η0)
2
, η2 − η20 = ρ2(1 + η0)

2 − 1,

a2(1 + η0)
2 − η20 = ρ2(1 + η0)

2 − 1,
a2(1 + η0)

2 = ρ2(1 + η0)
2 + (η20 − 1).
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Cancelling by 1+ η0 we deduce that a
2(1+ η0) = ρ2(1+ η0)+ η0− 1. Hence

η0 =
1 + a2 − ρ2

1− a2 + ρ2
, 1 + η0 =

2

1 + ρ2 − a2
. (11.13)

>From (11.12) and (11.13) we have

R =
2ρ

1 + ρ2 − a2
,
1

R
=
1

2

¡1
ρ
− 1

ρ0
¢
, (11.14)

where ρ0 denotes, as usual, the radius of the inverse sphere, i.e., ρ0 = ρ
a2−ρ2 .

We conclude that R is the exponential radius of S. Also note that

S =
©
y,Σnj=1

¡
yj −

ηj
1 + η0

¢2
=
¡ R

1 + η0

¢2ª
.

(Compare this with the discussion in section 5, in particular (5.1)).
Now consider n+ 1 spheres in Rn,

Sk =
©
y,Σnj=1(yj − akj)

2 − ρ2k
ª
, 1 ≤ k ≤ n+ 1

having mutual inclination γ. Also, consider an orthogonal sphere Sn+2 to
{Sk}n+1k=1 where

Sn+2 =
©
y,Σnj=1(yj − an+2,j)

2 = ρ2n+2
ª
.

In addition, consider a sphere of reference S where S = {y,Σnj=1(yj−aj)2 =
ρ2}. Similarly to (11.12) we define {µkj}, {Rk} as follows:

ρk =
Rk

1 + µk0
, akj =

µkj
1 + µk0

, 1 ≤ k ≤ n+ 2, 1 ≤ j ≤ n. (11.15)

In addition to (11.13) and (11.14) we also have similarly,

µk0 =
1 + a2k − ρ2k
1− a2k − ρ2k

, 1 + µk0 =
2

1 + ρ− k2 − a2k
, 1 ≤ k ≤ n+ 2, (11.16)

Rk =
2ρk

1 + ρ2k − a2k
,

1

Rk
=
1

2

¡ 1
ρk
− 1

ρ0k

¢
. (11.17)

Hence Rk = tanhβk are the hyperbolic exponential radii of the spheres Sk,
1 ≤ k ≤ n+ 2. Denote, as usual, by λk, the inclination of Sk to the sphere
of reference S. By an identical computation to the one in section 5 we have

λk =
1 + (µk, η)− µk0η0

RkR
, 1 ≤ k ≤ n+ 2. (11.18)
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We now use Theorem 4.2 and substitute {λk}n+2k=1 in (4.11) to get¡
Σn+1k=1

¡1 + (µk, η)− µk0η0
RkR

¢¢2 − ¡n+ 1

γ

¢
Σn+1k=1

¡1 + (µk, η)− µk0η0
RkR

¢2
=
¡
n+

1

γ

¢
(1− γ)

£¡1 + (µn+2, η)− (µn+2,0, η)
Rn+2R

¢2 − 1¤.
Multiplying by R2 and using R2 = 1 + η2 − η20 from (11.12),

¡
Σn+1k=1

¡1 + (µk, η)− µk0η0
Rk

¢¢2 − ¡n+ 1

γ

¢
Σn+1k=1

¡1 + (µk, η)− µk0η0
Rk

¢2
=
¡
n+

1

γ

¢
(1− γ)

£¡1 + (µn+2, η)− (µn+2,0)
Rn+2

¢2 − (1 + η2 − η20)
¤
.

We can now compare coefficients of {ηk}nk=0 (see section 8). Doing this
we may derive similar relations that appear in Theorem 8.2. Details are
omitted. It is worthwhile to point out that comparing the free coefficient,
we get

Σn+1k=1

1

R2k
− ¡n+ 1

γ
)
¡
Σn+1k=1

1

Rk

¢
=
¡
n+

1

γ

¢
(1− γ)

¡ 1

R2n+2
− 1¢.

This gives an alternative proof of Theorem 11.3.
In the next section, instead of one orthogonal sphere, we consider a set

of orthogonal spheres. This will give a natural generalization to some of the
previous theorems.

12 Set of orthogonal spheres: The algebraic ap-
proach

12.1 The algebraic approach: Clifford’s formula

In our paper we mainly have taken the geometrical approach. For the topics
that we consider in this section, the algebraic approach is very useful and
we will use it. Clifford discovered a special case of the Darbeux-Frobenius
Formula for “Poly spherical coordinates” (see [9] for a detailed discussion of
the above connections).

Clifford’s theorem. Let {Σj}n+2j=1 be n+2 spheres in Gn. Let Σ,Σ0 be two
spheres of reference in Gn. Denote by λ(Σ,Σ0) the inclination between Σ
and Σ0. Also denote by {λj}n+2j=1 and {µj}n+2j=1 the inclinations of {Σj}n+2j=1
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with Σ and Σ0 respectively. In addition {γjk}n+2j,k=1 will denote the inclination
between Σj and Σk respectively. Then

det

µ
λ(Σ,Σ0) λτ

µ ∆

¶
= 0 (12.1)

where λτ = (λ1, . . . , λn+2), µτ (µ1, . . . , µn+2) and ∆ = (γjk)
n+2
j,k=1.

Originally Clifford’s theorem was proved for the real case (i.e., Rn instead
of Gn). But the proof is identical. We shall also need the following

Lemma 12.1. Let u, {λj}n+2j=1 , {µj}n+2j=1 be complex numbers. Let ∆ be a
matrix (γjk)

n+2
j,k=1 which is symmetric such that det∆ 6= 0. Assume also

det

µ
u λτ

µ ∆

¶
= 0 (12.2)

for λτ = (λ1, . . . , λn+2), µτ = (µ1, . . . , µn+2). Then

u = λT∆−1µ (12.3)

where ∆−1 is the inverse matrix of ∆.

The proof of Lemma 12.1 is exactly the same as in [9, p. 306] and is
omitted.

Using the above we now have

Theorem 12.1. Let {Σj}n+1j=1 be n + 1 spheres in Gn+k, n ≥ 1, k ≥ 0,
having a mutual inclination γ 6= −1

n , γ 6= 1, γ 6= 0. Assume further that
{Σj}n+k+2j=n+2 is another set of spheres in Gn+k that are mutually orthogonal
and, in addition, each of them is orthogonal to all spheres {Σj}n+1j=1 . Let
Σ,Σ0 be two spheres of reference in Gn+k. Denote by λ(Σ,Σ0) the inclination
between Σ and Σ0. Also denote by {λj}n+k+2j=1 , {µj}n+k+2j=1 the inclinations

{Σj}n+k+2j=1 with Σ,Σ0 respectively. Then

Σn+1j=1λjΣ
n+1
j=1µj −

¡
n+

1

γ

¢
Σn+1j=1λjµj (12.4)

= (1− γ)(n+
1

γ

¢¡
Σn+k+2j=n+2λjµj − λ(Σ,Σ0)

¢
.

Proof. We first note that the above theorem is a generalization of The-
orem 9.1. Indeed, putting k = 0 in (12.4), we get (9.1).
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Since we follow the notations of Boyd ([9, p.306-7]), it will be convenient
to prove the above theorem by replacing n with n+ 1.

>From Clifford’s theorem stated earlier, by using (12.1) and replacing
n+ 2 with n+ k + 3, we get

det

µ
λ(Σ,Σ0) λ̃

τ

µ̃ ∆0

¶
= 0, (12.5)

where λ̃
T
= (λ1, λ2, . . . , λn+k+3), µ̃T = (µ1, µ2, . . . , µn+k+3). Using the

given conditions about inclinations, we have λ(Σj ,Σp), j 6= p, is equal to γ,
1 ≤ j, p ≤ n+2. Obviously λ(Σj ,Σj) = 1 for 1 ≤ j ≤ n+k+3. In addition,
using the orthogonality conditions, we have λ(Σj ,Σp) = 0 for 1 ≤ j ≤ n+k+
3,
n+ 3 ≤ p ≤ n+ k + 3. Hence,

∆0 =

µ
∆ 0

0 Ĩ

¶
, (12.6)

where

∆ =


1 γ · · · γ
γ 1 γ
...

. . .
...

γ γ · · · 1

 , = γJ + (1− γ)I (12.7)

where J is a (n + 2) × (n + 2) matrix, all of whose entries are 1; I, Ĩ are
identity matrices; and 0 is a zero matrix. Combining (12.5) and (12.6) we
get

det



λ(Σ,Σ0) λ1, . . . , λn+2
... λn+3, . . . , λn+k+3

µ1
...

... ∆
... 0

µn+2
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µn+3
...

... 0
... Ĩ

µn+k+3
...



= 0. (12.8)

We now multiply the n+3 row by λn+3 and subtract from the first row.
We then multiply the n+ 4 row by λn+4 and, again, subtract from the first
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row. Continuing in this way for n+3 ≤ j ≤ n+k+3, as can be easily seen,
we finally get

det



u λ1λ2, . . . , λn+2
... 0 0 · · · 0

µ1
...

... ∆
... 0

µn+2
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µn+3
...

...
... 0 Ĩ

µn+k+3
...


= 0, (12.9)

where u = λ(Σ,Σ0)−Σn+k+3j+n+3λjµj . But this leads at once to

det

µ
u λT

µ ∆

¶
= 0. (12.10)

We now use Lemma 12.1 for this specific value of u. Hence from (12.3) and
(12.7)

u = λT , ∆−1µ, (12.11)

where u = λ(Σ,Σ0)−Σn+k+3j=n+3λjµj , and ∆ = γJ + (1− γ)I.
We now find specifically ∆−1. In view of J2 = (n+2)J it is not difficult

to guess that ∆−1 = 1
1−γ (bJ + I) for some b. Indeed, ∆−1∆ = I leads to

1

1− γ
(bJ + I)(γJ + (1− γ)I) =

1

1− γ
(bγJ2 + γJ + (1− γ)bJ + (1− γ)I)

=
1

1− γ
(bγ(n+ 2)J + γJ + (1− γ)bJ + (1− γ)I).

Solving for b, we have bγ(n+2)+γ+(1−γ)b = 0, or b = −1¡
n+1+ 1

γ

¢ . Thus
∆−1 =

1

(1− γ)
¡
n+ 1 + 1

γ

¢¡−J + ¡n+ 1 + 1

γ

¢
I
¢
. (12.12)

>From (12.11) and (12.12) we get

u =
λT

(1− γ
¡
n+ 1 + 1

γ

¢¡−J + ¡n+ 1 + 1

γ

¢
I
¢
µ.
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Hence
(1− γ)

¡
n+ 1 +

1

γ

¢
u = −λTJµ+ ¡n+ 1 + 1

γ

¢
λT Iµ.

It is easy to check that

λTJµ =
¡
Σn+2j=1λj

¢¡
Σn+2j=1µj

¢
, λT Iµ = Σn+2j=1λjµj

Thus we get

(1− γ)
¡
n+ 1 +

1

γ

¢
u = −¡Σn+2j=1λj

¢¡
Σn+2j=1µj

¢
+
¡
n+ 1 +

1

γ

¢
Σn+2j=1λjµj .

But u = λ(Σ,Σ0)− Σn+k+3j=n+3λjµj yields

Σn+2j=1λjΣ
n+2
j=1µj −

¡
n+ 1 +

1

γ

¢
Σn+2j=1λjµj = (1− γ)

¡
n+ 1 +

1

γ

¢
(−u)

= (1− γ)
¡
n+ 1 +

1

γ

¢¡
Σn+k+3j=n+3λjµj − λ(Σ,Σ0)

¢
.

Replacing n+ 1 by n, we get (12.4).
It remains to check the condition γ 6= − 1

(n+1) (where again n+1 replaces
n). We prove this by induction on the number of orthogonal spheres. If there
is only one orthogonal sphere, the condition is already proved in the special
case of Theorem 9.1. For the general case, let n+ k + 3 spheres be given in
Gn+1. The n + k + 3 sphere is orthogonal to all other spheres {Σj}n+k+2j=1 .
Hence, by a Möbius transformation, we may assume that this sphere is
the plane zn+1 = 0. Now, reversing the Poincaré extension, we reduce the
number of orthogonal spheres by 1 and we may look at Gn instead of Gn+1.
Using the induction assumption ends the proof of the condition.

This ends the proof of the theorem.

12.2 Comparison between the algebraic and geometrical
methods

The above proof of Theorem 12.1 gives a new approach also to the special
case of Theorem 9.1. Hence, for Theorem 9.1 we have two independent
proofs, except for the condition γ 6= − 1n , which does not seem to follow
from algebraic considerations very easily. It is worthwhile to note that the
geometrical proof of Theorem 9.1 may be extended to the more general case
of Theorem 12.1. Indeed, we may use an induction process as for the proof
of the condition γ 6= −1

n+1 given above. Indeed, using the symmetry of the
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situation, it is enough to restrict the proof for the case λn+k+3 = µn+k+3 = 0.
Using a Möbius transformation, we may assume that the n + k + 3 sphere
is the plane zn+1 = 0. But the assumption λn+k+3 = µn+k+3 = 0 implies
that not only all spheres {Σj}n+k+2j=1 are orthogonal to Σn+k+3, but also Σ
and Σ0. Thus it is possible to use the Poincaré extension idea (in the reverse
direction) and complete the induction process, giving an alternative proof
of Theorem 12.1. We also note that the linear theorem (Theorem 4.1) was
proved only geometrically.

12.3 Further radii results: The hyperbolic “translation”

As in the previous cases, we can “translate” the inclination theorem proved
above to radii results. We take the special case Σ = Σ0 in Theorem 12.1.
We also use Lemma 4.1 in the standard way. Thus we get

Theorem 12.2. Let {Sj}n+1j=1 be n + 1 spheres in Gn+k, n ≥ 1, k ≥ 0,
having a mutual inclination γ, γ 6= − 1n , γ 6= 1, γ 6= 0. Assume further
that {Σj}n+k+2j=n+2 , is another set of spheres that are mutually orthogonal and,
in addition, each of them is orthogonal to all spheres {Σj}n+1j=1 . Denote by

{Rj}n+k+2j=1 the radii of these spheres respectively. Then

¡
Σn+1j=1

1

Rj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

R2j
= (1− γ)

¡
n+

1

γ

¢
Σn+k+2j=n+2

1

R2j
. (12.13)

Next, we give the following generalization of Theorem 11.3.

Theorem 12.3. Let n + 1 spheres {Sj}n+1j=1 be given in Rn+k with mutual

inclination γ, γ 6= 0, γ 6= 1, γ 6= 1
n . Let {Sj}n+k+2j=n+2 , k ≥ 0 be another set of

spheres in Rn+k that are mutually orthogonal and, in addition, each one of
them is orthogonal to all other spheres {Sj}n+1j=1 . Denote by {βj}n+k+2j=1 the

(generalized) hyperbolic radii of {Sj}n+k+2j=1 respectively. Then

¡
Σn+1j=1

1

tanhβj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

tanh2βj
(12.14)

=
¡
n+

1

γ

¢
(1− γ)

¡
Σn+k+2j=n+2

1

tanh2βj
− 1¢.

Proof. We can prove it in a similar way for the particular case of Theorem
11.3. Alternatively we can use the technique introduced in Theorem 5.1,
namely, using transformation from Gn+1 to Rn. We omit the details that
are very similar to previous considerations.
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12.4 Mutual orthogonal spheres

We now consider in particular n+ 2 spheres that are mutually orthogonal,
i.e., in other words, we consider the case of mutual inclination γ where γ = 0.
We have

Theorem 12.4. Let {Σj}n+2j=1 be a set of mutually orthogonal spheres in
Gn. Assume that Σ,Σ0 are two spheres of reference in Gn. Denote by
{λj}n+2j=1 , {µj}n+2j=1 the inclinations of {Σj}n+2j=1 to Σ,Σ

0 respectively. Also de-
note by λ(Σ,Σ0) the inclination between Σ and Σ0. Then

Σn+2j=1λjΣ
n+2
j=1µj = λ(Σ,Σ0). (12.15)

Proof. We use Clifford’s theorem quoted in section 12.1. In our case,
using γ = 0, we have ∆ = I. Using Lemma 12.1, we get (12.15) from (12.3)
where u = λ(Σ,Σ0).

Remark. “Translation” for radii give for n+2 mutually orthogonal spheres
{Sj}n+2j=1 having radii {Rj}n+2j=1 respectively, so that

Σn+2j=1

1

R2j
= 0. (12.16)

In particular for G2 we get for the two planes z1 = 0, z2 = 0 and the two
spheres having the radii R, iR and centered at the origin that

Σ4j=1x
2
j = 0, x1 = 0, x2 = 0, x3 =

1

R
, x4 =

1

iR
,

where {xj}4j=1 are the “bends” { 1
Rj
}4j=1. (The two planes z1 = 0 and z2 = 0

may be considered as spheres with infinite radii.) Obviously, we have a
similar situation in Gn.

13 Transformations of the unit sphere: Points at
infinity

13.1 The unit sphere and half plane

Let a = (0, . . . , 1) ∈ Gn. Consider the map w = a + 2(z−a)
(z−a)2 . We show that

this is a map from w2 = 1 onto zn = 0. Indeed,

w2 =
¡
(w − a) + a

¢2
= (w − a)2 + a2 + 2(w − a, a).
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Hence w2 = 1 implies that (w−a)2+2(w−a, a) = 0. Thus 1+¡2 (w−a)
(w−a)2 , a

¢
=

0. But (w − a)2 = 4(z−a)2
(z−a)4 = 4

(z−a)2 . We get 1 +
¡ (z−a)2

2 (w − a), a
¢
= 0.

Putting w − a = 2(z−a)
(z−a)2 by the given initial transformation, it follows that

1 + (z − a, a) = 0. Hence (z, a) = 0 as a2 = 1. But this is equivalent to
zn = 0, and thus our assertion is proved. We point out the fact that this
map implies that z = a + 2(w−a)

(w−a)2 as may be shown easily. Hence z
2 = 1 is

mapped onto wn = 0 by the same transformation.
We now have

Theorem 13.1. Given the map w−a = 2(z−a)
(z−a)2 from the unit sphere z2 = 1

onto wn = 0, we have
(dw)2

w2n
=

4(dz)2

(1− z2)2
. (13.1)

Proof. We have dwj =
2dzj
(z−a)2 −

2(zj−aj)
(z−a)4 d

¡
(z − a)2

¢
, 1 ≤ j ≤ n, where

wj = aj +
2(zj−aj)
(z−a)2 , 1 ≤ j ≤ n. Hence 1

4(dw)
2 = (dz)2

(z−a)4 +
Σnj=1(zj−aj)2

(z−a)8
¡
d(z −

a)2
¢2

− 2Σnj=1 (zj−aj ,dzj)(z−a)6
¡
d(z − a)2

¢
. But

Σnj=1(zj−aj)2
(z−a)8 = (z−a)2

(z−a)8 =
1

(z−a)6 . Also,
d
¡
(z − a)2

¢
= d

¡
Σ(zj − aj)

2
¢
= 2Σnj=1(zj − aj , dzj). Hence, the two last

expressions are cancelled and we have

1

4
(dw)2 =

(dz)2

(z − a)4
. (13.2)

We now calculate (1− z2)2. We have

z2 = a2 +
4(a,w − a)

(w − a)2
+
4(w − a)2

(w − a)4

= 1 +
4(a,w)− 4a2 + 4

(w − a)2

= 1 +
4(a,w)

(w − a)2
.

Hence z2 − 1 = 4(a,w)
(w−a)2 =

4wn
(w−a)2 or

(1− z2)2 =
16w2n
(w − a)4

. (13.3)
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But (w− a)2 = 4(z−a)2
(z−a)4 =

4
(z−a)2 or (w− a)4 = 16

(z−a)4 . Putting this in (12.3)
we get

w2n =
(1− z2)2

(z − a)4
. (13.4)

Dividing (13.2) by (13.4) implies (13.1), and thus the proof is done.
We next prove the invariance of the hyperbolic “metric” for the unit

“disc”. For this we need the following

Lemma 13.1. The hyperboloc “metric” on the “upper” half plane in Gn is
invariant under a self map.

Proof. We have to show for the mapping of the upper half plane onto
itself that dw2

w2n
remains invariant.

First let w = Az for a complex numberA. This yields for w = (w1, . . . , wn)
and z = (z1, . . . , zn) the self map from zn = 0 onto wn = 0. Obviously,

wn = Azn, and thus
(dw)2

w2n
= A2(dz)2

A2z2n
and the invariance property is proved

for this case.
We now consider the translation by β = (α1, . . . , αn−1, 0). This means

that for w = z + β we have wn = zn and thus, obviously, the invariance
proeprty is proved for this case as well.

It is left to show the invariance property for the inversion w = z
z2
.

We have wj =
zj
z2
, 1 ≤ j ≤ n. Hence dwj =

dzj
z2
− 1

z4
zjd(z

2), 1 ≤
j ≤ n. We get (dw)2 = (dz)2

z4
− 2Σnj=1(zj ,dzj)

z6
d(z2) +

Σnj=1(zj)
2

z8

¡
d(z2)

¢2. But
Σnj=1

(zj)
2

z8
= 1

z6
and d(z2) = d(Σz2j ) = 2Σ

n
j=1(zj , dzj), and thus the two last

terms are cancelled. This implies

(dw)2 =
(dz)2

z4
. (13.5)

Also from w = z
z2
, we have wn =

zn
z2
or

w2n =
z2n
z4
. (13.6)

>From (13.5) and (13.6) we get the invariance property at once.
Summing up, for the general self map of the “upper” half plane onto

itself, the invariance property is proved.
>From Theorem 13.1 and Lemma 13.1 we easily get

Theorem 13.2. For the general self map of the unit sphere z2 = 1 onto
itself, the hyperbolic “metric” is invariant.
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Proof. Indeed, using (13.1) for ẑ = Tz, the mapping of the unit sphere
onto itself, we have (dŵ)

2

ŵ2n
= 4(dẑ)2

(1−ẑ2)2 . >From the invariance property (dŵ)2

ŵ2n
=

(dw)2

w2n
that follows from Lemma 13.1, we get that (dẑ)2¡

1−(ẑ)2
¢2 = (dz)2

(1−z2)2 , and

the proof is finished.

13.2 Stereographic projection in Gn

Let b = (0, . . . , 0, 1) ∈ Gn+1. Denote a = (z1, . . . , zn, 0) and by c its projec-
tion on the unit sphere in Gn+1. Then the two vectors c−a and b−a have the
same direction. Hence there exists a complex t such that c = a+t(b−a). Also
c2 = b2 = 1, since both are located on the unit sphere. Hence c = a(1−t)+bt
implies 1 = a2(1−t)2+t2+2t(1−t)(a, b). Obviously (a, b) = 0 by definition.
Thus a2 = 1−t2

(1−t)2 =
1+t
1−t . In other words

1 =
a2 − 1
a2 + 1

. (13.7)

For c = c1, . . . , cj , . . . , cn, cn+1) and c = a+ t(b−a), we have cj = aj+ t(bj−
aj) = tbj + aj(1 − t), 0 ≤ j ≤ n + 1. But bj = 0 for 1 ≤ j ≤ n leads to
cj = aj(1− t). Also aj = aj , t = a2−1

a2−1 and thus

cj =
2zj
1 + z2

, 1 ≤ j ≤ n, (13.8)

as a2 = Σnj=1z
2
j = z2. In addition cn+1 = tbn+1 + an+1(1− t) = tbn+1 = t =

z2−1
z2+1

. Thus we get

c =
¡ 2z1
1 + z2

, · · · , 2zn
1 + z2

,
z2 − 1
z2 + 1

¢
(13.9)

is the image on the unit sphere of a = (z1, . . . , zn, 0). We now consider the
inverse transformation, i.e., the map from points on the unit sphere in Gn+1

on to points on the plane zn+1 = 0. Hence, let c = (c1, c2, . . . , cn, cn+1) be a
point on the unit sphere in Gn+1. Denote its image by a = (z1, z2, . . . , zn, 0).
From the above discussion we now get (see (12.9) that cn+1 =

z2−1
z2+1 or

z2 = 1+cn+1
1−cn+1 . Hence cj =

2zj
1+z2 implies that cj =

2zj

1+
¡
1+cn+1
1−cn+1

¢ . Thus cj =
2zj(1−cn+1)

2 or zj =
cj

1−cn+1 .
Summing up we have

zj =
cj

1− cn+1
, 1 ≤ j ≤ n, zn+1 = 0. (13.10)
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Note that if z2 = 0 then cn+1 = −1 and zj =
cj
2 , 1 ≤ j ≤ n. On the

other hand, if cn+1 = 1, then zj are not finite in general for 1 ≤ j ≤ n.
We come to this issue later on in this section when we deal with “points at
infinity”.

We next show that angles are preserved under stereographic projection.

Theorem 13.3. Under a stereographic projection from the unit sphere in
Gn+1 onto the plane, zn+1 = 0 angles are preserved.

Proof. We first recall the notation
−→
dw = (dw1, . . . , dwn, dwn+1) and

dw =
q
Σnj=1(dwj)2 and a similar notation for

−→
dz and dz. So let wj =

2zj
1+z2

,

1 ≤ j ≤ n, wn+1 =
z2−1
z2+1

be the map from the plane on the unit sphere. We

then have dwj =
2dzj
1+z2

− 2zj
(1+z2)2

2Σnk=1zkdzk, 1 ≤ j ≤ n.

(Indeed, d(z2) = d
¡
Σnk=1z

2
k

¢
= 2Σnk=1zkdzk.). Thus

dwj =
(1 + z2)2dzj
(1 + z2)2

− 4zj
(1 + z2)2

(z, dz), 1 ≤ j ≤ n,

or

(dwj)
2 =

4

(1 + z2)4
£
(1 + z2)2(dzj)

2 + 4z2j (z, dz)
2

− 4(zj , dzj)(z, dz)(1 + z2)
¤
, 1 ≤ j ≤ n.

Hence summation on j gives

Σnj=1(dwj)
2 =

4

(1 + z2)4
£
(1 + z2)2(dz)2 + 4z2(z, dz)2 − 4(z, dz)2(1 + z2)

¤
.

Cancelling 4z2(z, dz)2 we get

Σnj=1(dwj)
2 =

4

(1 + z2)4
£
(1 + z2)2(dz)2 − 4(z, dz)2¤. (13.11)

Also from wn+1 =
z2−1
z2+1

= 1− 2
z2+1

we get

dwn+1 =
2

(1 + z2)2
d(z2) =

2

(1 + z2)2
2Σnj=1zjdzj

or
(dwn+1)

2 =
16

(1 + z2)4
(z, dz)2. (13.12)
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From (13.11) and (13.12) we finally get

Σn+1j=1 (dwj)
2 = (dw)2 =

4(dz)2

(1 + z2)2
. (13.13)

More generally, by a computation that is very similar to the above one
and which is therefore omitted, we get for dw̃ = (dw̃1, . . . , dw̃n+1), dw =
(dw1, . . . , dwn+1),

Σn+1j=1 dwjdw̃j =
4(
−→
dz,
−→
dz̃)

(1 + z2)2
= (
−→
dw,
−→
dw̃) (13.14)

Since, as we pointed out above, dw =
p
(dwj)2, we can write (13.13) in the

equivalent form

dw =
2dz

1 + z2
, dw̃ =

2dz̃

1 + z2
. (13.15)

Hence from (13.14) and (13.15) we get

(
−→
dw,
−→
dw̃)

dwdw̃
=
(
−→
dz,
−→
dz̃)

dzdz̃
, (13.16)

which is the desired result we claimed in Theorem 13.3.
It is also easy to show that for u = (u1, . . . , un, un+1), v = (v1, v2, . . . , vn+1)

on the unit sphere on Gn+1 that are the images of α = (α1, . . . , αn,0),
β = (β1, . . . , βn,0) we get

(u− v)2 = Σn+1j=1 (uj − vj)
2 =

4(α− β)2

(1 + α2)(1 + β2)
= 4Σnj=1

(αj − βj)
2

(1 + α2)(1 + β2)
.

The calculation is identical to the classical case in Rn, and thus it is omitted.
We may say that the “distance” |u − v| between two points on the sphere
is equal to the expression (α−β)

(1+|α|2)(1+|β|2) . But, of course, this is just an
imitation of the situation in Rn, and there is no real meaning to “distances”
or “metric” here.

Similarly, one may show that spheres on the unit spheres in Gn+1 are
mapped onto planes or spheres on zn+1 = 0, depending on whether the
sphere passes through the north pole or not. Again, details are omitted as
the computations are identical to those in Rn+1.

We now move onto the discussion of
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13.3 Points of infinity

In section 13.2 we pointed out the delicate situation cn+1 = 1. We first recall
the concept of inversion on the unit sphere inGn+1. Let z = (z1, z2, . . . , zn, 0)
be a point on zn+1 = 0. Consider the image c = (c1, c2, . . . , cn, cn+1) on the
unit sphere. By (12.9) we have cj =

2zj
1+z2

, 1 ≤ j ≤ n, cn+1 =
z2−1
z2+1

.
Let w be the inverse point of z in the plane zn+1 = 0, with respect to the
unit sphere. Since wj =

zj
z2 , 1 ≤ j ≤ n, for the image c∗ we get c∗ =

(c∗1, c∗2, . . . , c∗n, c∗n+1) =
¡
2w1
1+w2

, . . . , 2wn
1+w2

, w
2−1

w2+1

¢
. Hence 2wj

1+w2
=

2zj

z2

1+ 1
z2
=

2zj
1+z2

,

1 ≤ j ≤ n or c∗j = cj , 1 ≤ j ≤ n. Also

c∗n+1 =
w2 − 1
w2 + 1

=
1
z2
− 1

1
z2
+ 1

=
1− z2

1 + z2
= −cn+1.

Summing up, we have that the inverse point of (c1, c2, . . . , cn, cn+1) is
(c1, c2, . . . , cn,−cn+1).

In view of cn+1 = z2−1
z2+1 , for z

2 = 0 we have cn+1 = −1. These may be
considered the points at the “south pole”. But cj =

2zj
1+z2

, 1 ≤ j ≤ n,
and z2 = 0 imply that c2 = 0. To each point (c1, . . . , cn,−1), Σnj=1c2j = 0,
we now define the inverse point (c1, . . . , cn, 1), Σc2j = 0. These are the
points of the “north pole”. In contrast to the case of cn+1 with the usual
topology |z − w|2 = Σnj=1|zj − wj |2, we have here many infinity points and
not only one. Indeed, in Cn the condition |z|2 = 0 implies z = 0, i.e., zj = 0,
1 ≤ j ≤ n. Here we get all points satisfying Σnj=1z

2
j = 0. In other words,

in contrast to the case of Cn+1, each point in Gn+1 satisfying Σnj=1c
2
j = 0,

cn+1 = −1, may be considered as a point of the south pole suitable to
the point (z1, z2, . . . , zn, 0) where, by (13.10), we get zj =

cj
1−cn+1 =

cj
2 ,

1 ≤ j ≤ n, zn+1 = 0. Each of these points has an inverse point which may
be considered as a “point at infinity” and it is the image of (c1, c2, . . . , cn, 1),
i.e., the inverse point of the “south pole” point (c1, c2, . . . , cn,−1). In this
way we get a one-one map of the “extended” plane zn+1 = 0 onto the
extended unit sphere in Gn+1. Of course, the property where inverse points
are mapped onto inverse points by Möbius maps can be extended now also
to points at infinity, by continuity arguments applied to the unit sphere in
Gn+1.

The discussion of inverse points referred to in the introduction is now
complete.
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14 Spherical geometry

In this final section we give some results in spherical geometry that are very
similar to previous results in the hyperbolic geometry that were presented
earlier. Our aim is to generalize a result of Mauldon [7, Theorem 3.2].

Theorem 14.1. Let n+1 spheres {S}n+1j0 be given in the spherical n+k−1
space having mutual inclination γ, γ 6= 0, γ 6= 1, γ 6= −1

n , and k ≥ 0, n ≥ 2.
Let {Sj0}n+k+1n+2 be another set of spheres in the same spherical n + k − 1
space, such that they are mutually orthogonal and, in addition, each one of
them is orthogonal to all other spheres {Sj0}n+1j=1 . Denote by {βj}n+k+1j=1 the

angular radii of the {Sj0}n+k+1j=1 respectively. Then

¡
Σn+1j=1

1

tanβ2j

¢− ¡n+ 1

γ

¢
Σn+1j=1

1

tan2 βj
(14.1)

=
¡
n+

1

γ

¢
(1− γ)

¡
Σn+k+1j=n+2

1

tan2 βj
+ 1
¢
.

Proof. We first note that if k = 0, the set {Sj0}n+k−1n+2 is void or, in other
words, there are no orthogonal spheres, and we are back to the case Mauldon
considered in the above mentioned theorem. Also, as usual, we consider the
complex case, i.e., the n+ k− 1 spheres {Sj0}n+k+1j=1 are located on the unit
sphere in Gn+k. The definition of the angular radius in the complex case
needs some explanation. We transform the orthogonal spheres {Sj}n+k+1j=1

to the unit sphere in Gn+k, such that the intersection of Sj with the unit
sphere is Sj0. Then the angular radius of Sj0 is defined as the radius of Sj
(see Figure 22).

We now turn to the proof of the theorem. We construct the spheres
{Sj}n+k+1j=1 inGn+k as explained above. Considering the situation inGn+k we
observe that we have the spheres {Sj}n+1j=1 arising from {Sj0}n+1j=1 , and another

set of spheres {Sj}n+k+1j=1 arising from {Sj0}n+k+1j=n+2 . We now claim that after
the extension, the inclinations are preserved. More specifically, we claim
that the sets {Sj}n+1j=1 have mutual inclination γ, and the sets {Sj}n+k+1j=n+2

are mutually orthogonal, and that each one of them is orthogonal to each
of the sets {Sj}n+1j=1 . To justify this claim, we use a Möbius transformation
in Gn+k that maps the unit sphere in this space onto the plane zn+k = 0.
By construction {Sj}n+k+1j=1 are all orthogonal to the unit sphere in Gn+k.
Hence, as a result of the Möbius map described above, the images of these
spheres are orthogonal to zn+k = 0. Also, as a corollary of the above Möbius
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Figure 22: The angular radius.

map, the intersections of them with zn+2 = 0 are the images {Sj0}n+k+1j=1 .
The assertion about the invariance of inclination follows at once from the
invariance property of inclination under a Möbius map and also under a
Poincaré extension.

Using the above, we now see that the sets of {Sj}n+1j=1 have mutual incli-

nation γ, since the same is true for {Sj0}n+1j=1 . Also, {Sj}n+k+1j=n+2 are mutually
orthogonal, and each one of them is orthogonal to each of the {Sj}n+1j=1 . In
addition, obviously, the unit sphere in Gn+k is orthogonal to all spheres
{Sj}n+k+1j=1 . Hence, we can now use Theorem 12.2 for the set {Sj}n+1j=1 and

the other set composed of {Sj}n+k+1j=n+2 and the unit sphere (i.e., there are
k + 1 spheres in the second set).

Since the radius of the unit sphere in Gn+k is 1, from (12.13) we get¡
Σn+1j=1

1

Rj

¢2 − ¡n+ 1

γ

¢
Σn+1j=1

1

R2j
= (1− γ)

¡
n+

1

γ

¢¡
Σn+k+1j=n+2

1

R2j
+ 1
¢
. (14.2)

This is equivalent to (14.1) in view of Rj = tanβj , 1 ≤ j ≤ n+ k + 1.
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at the Technion.
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