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Abstract

We present the results of a numerical search for a wavelet basis
with the best performance for image compression. Wavelets of mul-
tiparametric families of wavelets with rational masks were considered
as candidates for the best basis. The results of the modeling are as
follows.
1. The best biorthogonal bases coincide with the classical 9/7 bases

for the case of even symmetric wavelets and with 22/14 coiflets for the
odd case.
2. The optimality of the basis depends only on the image resolu-

tion. Adaptation to a certain image practically do not improve the
performance.

Keywords: Orthogonal Greedy Algorithm, wavelet frame, image com-
pression.

1 Introduction

The problem of finding the best wavelet bases for image compression has a
long history. An enormous number of papers was published on this topic. We
mention only a few of them [1—3]. Currently, when JPEG2000 is accepted as
the international image compression standard much less attention is paid to
this topic. The famous 9/7 and 5/3 bases from [1] were taken as the state-
of-the-art bases for the lossy and lossless compression. While there are a
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few bases which can compete with the mentioned ones (cf, [2]), it is clear
that staying in the framework of the standard dyadic separable wavelets the
performance cannot be improved significantly. At the same time, a lot of
questions are still open.

One of the crucial question is which properties of the bases guarantee the
high performance in an image approximation (compression). There are the
rules of thumb requiring the smoothness of the wavelet basis for reconstruc-
tion (a synthesis operator) agreeing with the smoothness of images and as
many as possible vanishing moments for a dual wavelet system (an analysis
operator) used for the computation of wavelet coefficients. The mentioned
classical wavelets satisfy those rules. However, it is not clear why a lot of
other wavelet systems satisfying the same properties have much lower per-
formance. A comprehensive answer to this question probably will be found
if the researchers understand what is an image. However, the nature of im-
ages is very complicated and an adequate model of images has not be found
yet. Thus, the smoothness and the vanishing moments provide us with a
necessary (not sufficient) condition.

Another question tightly associated with the first one is about opportu-
nity to improve wavelet bases performance in image compression essentially.
Basing on the state-of-the-art knowledge this perspective from the practical
point of view looks very cloudy. As it was mentioned above, impossibility
of such improvement is due to the failure to find better bases in spite of the
extensive search performed by many researchers.

In this note, we are not going to give any comprehensive answers those
questions. This is just a report about numerical experiments emphasizing
on some special aspects of the problems. We suggest a simple procedure
allowing to extend the search range for best bases significantly. The reported
numerical results bring a lot of questions rather than give answers. Some of
the results implicitly contradict to widely accepted point of views. However,
we hope that this report may be a useful brick in construction of image
models.

We arrive at two main conclusions. First of all, the best biorthogonal
bases have been already found. Secondly, the best basis practically does not
depend on an image.

2 Definitions and Methods

We refer the reader to the book [4] for a comprehensive introduction to the
theory of wavelet bases. Only definitions essential for this note are given
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below.
Associated with Multiresolution Analysis (MRA) biorthogonal wavelets

can be generated by two formal Laurent seriesH0(z) =
P
Z hkz

k and H̃0(z) =P
Z h̃kz

k. In this note, the coefficient sequences hk and h̃k decay expo-
nentially. H0(z) and H̃0(z) are called symbols of mutually dual MRAs
(or, to be more precise, dual scaling functions). Two derived functions
H1(z) = zH̃0(−1/z) and H̃1(z) = zH0(−1/z) are called wavelet symbols.

To provide the perfect reconstruction property the condition

H0(z)H̃0(1/z) +H0(−z)H̃0(−1/z) = 1. (1)

as well as low-pass filter condition H0(1) = 1 and H̃0(1) = 1 are imposed.
In this case, for the matrices

M(z) :=

µ
H0(z) H0(−z)
H1(z) H1(−z)

¶
and M̃(z) :=

µ
H̃0(z) H̃0(−z)
H̃1(z) H̃1(−z)

¶
the identity

MT (z)M̃(1/z) = I

takes place. In particular, representing the data {ck} in the form of formal
Laurent series x(z) :=

P
ckz

k, we haveµ
y0(z

2)
y1(z

2)

¶
= M̃(1/z)

µ
x(z)
x(−z)

¶
,

µ
x(z)
x(−z)

¶
=MT (z)

µ
y0(z

2)
y1(z

2)

¶
,

(2)
where coefficients of the Laurent series y0(z2) and y1(z2) are called low-pass
and high-pass coefficients of the decomposition correspondingly.

In Electrical Engineering the set of functions H0(z), H̃0(z), H1(z), H̃1(z)
are called a filter bank (FB) and the functions constituting the filter bank
are called filters.

A wavelet transform is organized in multilevel manner when the the low-
pass output y0(z2) of a filter bank transform is used after downsampling
y0(z

2) 7→ x1(z) as an input for the next filter bank transform and so on as
many times as necessary.

We note that, in fact, the decomposition–reconstruction formulas con-
sist of convolutions. Therefore, we have less computational costs when a
filter bank consists of Laurent polynomials of low degree. For this reason,
polynomial filter banks became very popular in industrial applications.

It is well-known that the implementation of rational filter banks of the
form

H(z) =
P (z)

Q(z)
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can be implemented with, so-called, recursive filters with at least the same
order of computational efficiency as polynomial filters. At the same time,
rational filters bring enormous amount of the flexibility.

While the first non-trivial wavelet basis constructed by Strömberg ([5])
is associated with a rational filter bank, the first comprehensive study of this
opportunity was conducted by C. Herley and M. Vetterli [6]. In particular,
they showed that rational filter banks may combine the symmetry, several
vanishing moments, and the paraunitarity (M(z) = M̃(z)) of filter banks.
A few years later, rational FBs underwent more detail study [7—11]. Their
high efficiency in applications was shown, e.g, in [12, 13].

Now we explain what is a source of the higher flexibility of rational
FBs against polynomial ones. The reason lies in the necessity to solve the
equation (1) for providing the perfect reconstruction property. While there
are a lot of polynomial solutions (even with a fixed degree) to (1), equation
(1) is very restrictive to provide a combination of the symmetry and an
appropriate number of vanishing moments.

In the rational case, we are just starting from two arbitrary Laurent
polynomials P (z) and P̃ (z), P (1) 6= 0, P̃ (1) 6= 0. Let

R(z) := P (z)P̃ (1/z) + P (−z)P̃ (−1/z),
then obviously R(z) depends only on z2, i.e., R(z) = Q0(z

2), and if P (z) and
P̃ (z) are both with whole- or half-point symmetry, thenQ0(z) has the whole-
point symmetry. In particular, the last property means that a symmetric
factorization Q0(z) = Q(z)Q̃(z) (maybe not unique) exists. Thus, the filters

H0(z) =
P (z)

Q(z2)
and H̃0(z) =

P̃ (z)

Q̃(z2)

are solutions to (1). While not all FBs satisfying (1) generate genuine
wavelet bases, the degree of freedom for rational filter banks is not com-
parable with polynomial constructions.

Let us estimate numerically the number of degrees of freedom for the
described FBs when low-pass filters are symmetric. For the whole-point
symmetry, convolution kernels generated by P (z) and P̃ (z) have odd lengths
2n+1 and 2m+1. Due to the symmetry, we are free to choose only n+1 and
m+1 coefficients. In addition, multiplication of the polynomial by constants
do not bring new FBs. So we have only d = n+m degrees of freedom.

Obviously, for half-point symmetric FBs with the polynomials at the
numerators generating convolutions of lengths 2n and 2m, we have d =
n+m− 2 degrees of freedom.
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In particular, in our numerical experiments, we optimized (anti)symmetric
wavelets for 3 cases:

• 8/4 (n = 4, m = 2) rational wavelets, d = 4;

• 10/6 (n = 5, m = 3) rational wavelets, d = 6;

• 9/7 (n = 4, m = 3) rational wavelets, d = 6.

For example, for the 8/4 FB, we have

H0(z) =
a0(1 + z) + a1(z

−1 + z2)

(1 + qz2)(1 + q−1z−2)
, (3)

H̃0(z) =
ã0(1 + z) + ã1(z

−1 + z2) + ã2(z
−1 + z3) + ã3(z

−2 + z4)

(1 + q̃z2)(1 + q̃−1z−2)
(4)

3 Modeling settings and results

We used simple scheme of a random search of the best basis among wavelets
of 4- or 6-parametric families (see above). The initial point was also chosen
randomly.

The search was performed from coarse approximation to follow-up re-
finements of the range and the step of the search. It should be mentioned
that the problem has many local extrema. For this reason, the method does
not give the same result for each trial. However, for overwhelming majority
of trials the optimal wavelets coincide. In addition, there is some kind of
"inverse instability" when relatively large fluctuations of FB coefficients do
not result in an essential change of the wavelet bases.

For our experiments we used standard grayscale test images of size 512×
512 like Lena, Barbara, Boat, Goldhill and so on (totally 12 images). We
started from 4- or 5-level decomposition with follow-up uniform quantization
(with a usual extra dead zone around 0). Wavelet coefficients underwent
entropy encoding with either SPIHT ([14]) or PACC2 ([12]).

Now we describe an optimization goal function. For a fixed length of
an entropy encoder output, Euclidean deviation of the approximation from
the original image was computed. To be more precise, we computed PSNR
value in dBs which is defined by the formula

PSNR = 10 log10
51222552P
(xi − x̂i)2

,
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where {xi} and {x̂i} are values of the luminosity of the original and approx-
imating images.

While PSNR-criterion is quite far from the "metric" of a human eye, it
is traditionally used in image processing.

The length of the code was chosen from the requirement to have 30-40
dB of PSNR.

Maximization of PSNR was conducted for separate images. In addition,
we optimized FBs for average PSNR as a goal function taken over all 12
images.

The results of the modeling are as follows.

1. The optimal FB practically does not depend on the image. This fact
contradicts the widely accepted point of view that for images with
different contents the choice of the basis may bring significant im-
provement. The actual improvement is within 0.1dB. By analogy with
stochastic processes, this property may be called ergodic. Of course,
we have this property only for natural still images taken with a picture
camera. Artificial images (like a cartoon) require different methods.

2. The graphs of the optimal 8/4 wavelets and coefficients of the rational
FB (from formulas (3) and (4)) are given on Fig. 1 (the solid line)
and in Table 1. It turns out that the optimal bases were already found
among polynomial FBs. The polynomial 22/14 implementation of the
8/4 FB was found in [2] (the dotted line on Fig. 1). Those wavelets
with 7 and 5 vanishing moments satisfy Coifman property. While in
some applications the property of a FB to be polynomial is preferable,
the rational 8/4 FB has much less computational complexity.

3. The extension of the search up to 6-parametric family of 10/6 wavelets
do not bring any visible improvement of the performance. So we arrive
at the conclusion that staying in the described framework of compres-
sion we cannot improve the performance due to new wavelet bases.

4. The optimization of 9/7 rational FBs gives wavelet bases practically
non-distinguishable from the classical 9/7 wavelets. The performance
of the optimal basis is within a few hundredth of dB from the polyno-
mial FB.

268



√
2H0(z)

√
2H̃0(z)

a0 a1 q ã0 ã1 ã2 ã3 q̃

0.690304 0.254762 0.156082 0.736905 0.280818 0.030724 0.043537 0.242698

Table 1: Coefficients for the optimal 8/4 bases generated by
rational symbols.

Figure 1: Optimal bi-orthogonal 8/4 and 22/14 wavelet bases for 512× 512
images: a) decomposition pair (left); b) reconstruction pair (right). Solid
lines correspond to 8/4 wavelets.

Figure 2: Optimal bi-orthogonal wavelet bases for QCIF images: a) decom-
position pair (left); b) reconstruction pair (right).

While the dependency of optimal bases on a particular image is very
weak, the dependency on image resolution is much more explicit. In [12],
we optimized basis for a video codec working with, so-called, QCIF format
(172 × 144 pixels) intended for very low bit rate compression. The graphs
of those optimal wavelet bases are shown on Fig. 2. It is easy to see that
they are quite different.

We note that the modeling was also conducted for different goal func-
tions. Among of them we considered Hausdorff and c1 approximations. In
all cases, there was no visible difference between optimal bases.
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