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Abstract

There is a well-known method of extrapolation of signals with the
finite Fourier spectrum developed by Gershberg and Papoulis. Aizen-
berg introduced a method which uses the theory of Hardy spaces
in complex analysis. In a recent publication, a new extrapolation
method for one-dimensional signals was proposed. The method is
based on combining the methods of Aizenberg and Gershberg-Papoulis
and sometimes permits optimized calculations (after a certain regular-
ization, if needed). This method was extended to both two-dimensional
and three-dimensional signals.

1 Basic definitions

The Wiener class of functions. The Wiener class W3
α is the class of

functions in L2(R3) that have the Fourier transform (spectrum)

g(w) =
R
R3

f(x)e−i(w1x1+w2x2+w3x3)dx ,

whose support is concentrated in the parallelepiped {w : |wj | ≤ αj , j =
1,2,3}.

We also introduce the class W3
α+ of functions in L

2(R3) whose support
of the spectrum is in {w : 0 ≤ wj ≤ aj , j = 1,2,3} ⊂ R3+ = {w : wj ≥ 0,
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j = 1,2,3}. Sometimes we will denote the class W3
α by L

2−α,α(R3) and W3
α+

by L20,α (R
3).

The Hardy class of functions. The Hardy class of functions H2(Dδ)
(or H2δ) is the class of functions holomorphic in the product of half-planes Dδ

= {z : Im zj > -δ, j = 1, 2, 3} ⊂ C 3. Here and below, δ is a fixed positive
constant. H2(Dδ) is the subspace of A(Dδ) (space of functions, holomorphic
in Dδ) that consist of functions satisfying the condition

R
R3
|f(x+iy)|2dx ≤ C

where -δ < yj < ∞, j = 1, 2, 3.
The Cauchy transform. The Cauchy transform ( of ϕ∈L2(R)) is

defined as

C2δ(ϕ)(z) =

+τZ
−τ

ϕ(t)

z − t+ 2iδ
dt

2 Formulation of the problem

Consider a famous problem in the theory of Fourier signals: a signal with a
finite Fourier spectrum is an entire function. If one can extrapolate Fourier
signals properly, then it is possible to achieve super resolution of physical
devices, control of narrow band noise, and so on.

Those 3-dimensional signals are the functions of the Wiener class W3
α.

Note the connection between the Wiener classes W3
α and W

3
α+: If f ∈ W3

α,
then f(z)ei<α,z> ∈ W3

2α+ and, conversely, if f ∈ W3
2α+, then f(z)e

−i<α,z> ∈
W3

α. Further, W
3
α+ ⊂ H2(Dδ) for all δ > 0.

3 The Aizenberg method

We can transfer our problem of extrapolation of Fourier signals into the
framework of Hardy spaces and concentrate on the problem of extrapolation
of Hardy class functions. It is shown in [4] that: For every function f (z) ∈
H2(Dδ) the following equations are true (the convergence is that uniform on
compact sets in Dδ and, moreover, in norm of H2(Dδ)):

for n = 1:

f(z) = lim
m→∞

mP
k=1

f(xk)
2iδ

z−xk+2iδ
mQ

j=1 j 6=k
(z−xj)(xk−xj+2iδ)
(z−xj+2iδ)(xk−xj)
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for n = 2:

f(z1, z2) = lim
m→∞

mP
k1,k2=1

f(x1k1 , x2k2)
(2iδ)2

(z1−x1k1+2iδ)(z2−x2k2+2iδ)
×

×
mQ

j=1 j 6=k1

(z1−x1j)(x1k1−x1j+2iδ)
(z1−x1j+2iδ)(x1k1−x1j)

mQ
j=1 j 6=k2

(z2−x2j)(x2k2−x2j+2iδ)
(z2−x2j+2iδ)(x2k2−x2j)

for n = 3:

f(z1, z2, z3) = lim
m→∞

mP
k1,k2,k3=1

f(x1k1 , x2k2 , x3k3)×

× (2iδ)2

(z1−x1k1+2iδ)(z2−x2k2+2iδ)(z3−x3k3+2iδ)
×

mQ
j=1 j 6=k1

(z1−x1j)(x1k1−x1j+2iδ)
(z1−x1j+2iδ)(x1k1−x1j)

×

×
mQ

j=1 j 6=k2

(z2−x2j)(x2k2−x2j+2iδ)
(z2−x2j+2iδ)(x2k2−x2j)

mQ
j=1 j 6=k3

(z3−x3j)(x3k3−x3j+2iδ)
(z3−x3j+2iδ)(x3k3−x3j)

where xn and x1n, x2n, x3n are the sets of points where the value of function
f is known. Variants of these formulas for higher dimension are considered
in [4] as well.

4 The Gershberg-Papoulis method

4.1 The original Gershberg-Papoulis method

Let us consider the space H=L2(R). Let I1 be the canonical injection of
the subspace H1= L20,2σ(R) in L

2(R); and I2 the canonical injection of
H2 = L

2([−τ , τ ]) in L2(R), here for every ϕ ∈ H2 we choose its corresponding
extension to zero. Then P1: H → H1, P2: H → H2 are orthogonal projec-
tions. The operator β = P2 ◦ I1 from P2 to subspace H1 has the adjoint β∗

= P1 ◦ I2, and the operator β∗β has the analytic representation:

β ∗ β(f)(x) =
+τR
−τ

eiσ(x−t) sinσ(x−t)π(x−t) f(t)dt, where x ∈ R, f ∈ H1.

The following algorithm is described to make it possible to introduce the
parameter δ to reduce the problem to that within the framework of Hardy
spaces. Let us consider the operator B0: H1 → H1 defined by B0 (ϕ) = ϕ +
(β∗β)(f - ϕ) = ϕ + P1P2 (f - ϕ), ϕ ∈ H1, where f is given, and only the part
of it on the interval [-τ , τ ] is known. It is shown in [1] that the only possible
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fixed point of this operator is the extrapolation of the given function. Now,
the iteration is introduced:

gn+1 = B0(gn), with g0 = P1P2(f) = β∗β(f);

and the analytic expression for gn is gn = (IdH1 — (IdH1 — P1P2)n+1)(f),
where Id is the identity operator.

4.2 The Gershberg-Papoulis method in Hardy spaces

In this method, a new operator is introduced: Bδ: L20,2σ(R) → L20,2σ(R),
which uses the Cauchy transformation C2δ. Let iδσ be the canonical injection
from L20,2σ(R) in H

2
δ , and let its adjoint operator be Π

δ
σ. Now, let us define

an operator αδσ from L20,2σ(R) to L
2([-τ ,τ ]) as αδσ = Rτ ◦ iδσ, where Rτ : H2δ

→ L2([-τ , τ ]) is an operator of restriction ϕ → ϕ|[−τ,τ ]. Also, the adjoint
operator may be defined as (αδσ)

∗ = Πδσ ◦ R∗τ = − 1
2iπΠ

δ
σ ◦ C2δ.

It is now possible to define the operator Bδ : L20,2σ(R) → L20,2σ(R) as
Bδ(ϕ) = ϕ + (αδσ)

∗ ◦ αδσ(f - ϕ), ϕ ∈ L20,2σ(R).
Note that, exactly as with the operator B0, the definition requires only

the knowledge of the given function f on a certain interval [-τ , τ ]. Also, (αδσ)
∗

◦ αδσ(ϕ)(z) = P1P2(ϕ)(z + 2iδ), ϕ ∈ L20,2σ(R).We now define the iteration:
gn+1 = Bδ (gn), with g0 = ((αδσ)

∗ ◦ αδσ)(f); the analytic expression for gn is
gn = (IdL20,2δ(R)

− (IdL20,2δ(R) − (α
δ
σ)
∗ ◦ αδσ)n+1)(f).

It is shown in [1] that the only possible fixed point of this iteration is
the extrapolation of the given function. The research shows that both the
Gershberg-Papoulis and the new method of French mathematicians work in
the three-dimensional space.

4.3 The Gershberg-Papoulis method in the two- and three-
dimensional spaces

The method of Gershberg-Papoulis can be extended into two- and three-
dimensional cases. Consider all the operators to be two-dimensional, and
the analytic expression of the operator β∗β will take the form

β ∗ β(f)(x, y) =
ZZ
τ1,τ2

eiσ1(x−t)+iσ2(y−s)
sinσ1(x− t)

π(x− t)
· sinσ2(y − s)

π(y − s)
f(s, t)dsdt,

where x, y ∈ R, f ∈ H21 — the H1 space of functions of two variables.

112



Since our function f ∈ H21, we can change the double integral form to
repeated, thus modifying the expression to the following:

β∗β(f)(x, y) =
+τ1Z
−τ1

eiσ1(x−t)
sinσ1(x− t)

π(x− t)

 +τ2Z
−τ2

eiσ2(y−s)
sinσ2(y − s)

π(y − s)
f(s, t)ds

 dt

where x, y ∈ R, f ∈ H21.
Now, to redefine the iteration let us consider the operator B20: H

2
1 → H21

defined by B20 (ϕ) = ϕ + (β∗β)(f - ϕ) = ϕ + P1P2 (f - ϕ), ϕ ∈ H21, where f
is given, with only the part of it on [-τ1, τ1]×[-τ2, τ2] known. We can prove
that the only possible fixed point of this operator is f.

Proof : Consider ϕ ∈ H21 such that ϕ = B20 (ϕ). Then ϕ = ϕ + P1P2 (f
- ϕ), and, consequently, P1P2 (f - ϕ) = 0, which means that ϕ = f (since
the operator P1P2 is injective). We now introduce the new iteration: gn+1
= B02 (gn), with g0 = P1P2 (f) = β∗β (f) (two-dimensional case); and the
analytic expression for gn is gn = (IdH2

1
− (IdH2

1
− P1P2)

n+1)(f)
The only possible fixed point of this iteration is f.

A similar treatment is true for the three-dimensional spaces. In that
case, the analytic expression of the operator β∗β is of the form

β∗β(f) =
+τ1R
−τ1

eiσ1(x−t) sinσ1(x−t)π(x−t) ×

×
Ã
+τ2R
−τ2

eiσ2(y−s)
sinσ2(y − s)

π(y − s)

Ã
+τ3R
−τ3

eiσ3(w−h)
sinσ3(w − h)

π(w − h)
f(h, s, t)dh

!
ds

!
dt,

where x, y, w ∈ R, f ∈ H31.

5 A new method

5.1 A new method in the two- and three-dimensional spaces

A new operator is introduced: B2δ: L
2
0,2σ(R

2) → L20,2σ(R
2), which uses the

Cauchy transformation C22δ defined as

C22δ(ϕ)(z1, z2) =

ZZ
τ1,τ2

ϕ(t, s)

(z1 − t+ 2iδ)(z2 − s+ 2iδ)
dtds.

Let iδσ be a canonical injection from L20,2σ(R
2) in H2δ , with the ad-

joint operator Πδσ. Now, let us define an operator α
δ
σ from L20,2σ(R

2) to
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L2([−τ1, τ1] × [−τ2, τ2]) by αδσ = Rτ ◦ iδσ, where Rτ : H2δ → L2([-τ , τ ]) is
the operator of restriction ϕ→ ϕ|[−τ1,τ1]×[−τ2,τ2]. Also, the adjoint operator
may be defined as

(αδσ)
∗ = Πδσ ◦R∗τ = − 1

2iπΠ
δ
σ ◦ C2δ.

It is now possible to define the operator B2δ : L
2
0,2σ(R

2) → L20,2σ(R
2) by

B2δ (ϕ) = ϕ + (αδσ)
∗ ◦ αδσ (f - ϕ), ϕ ∈ L20,2σ(R2).

Note that, just as it was with the operator B0, the definition demands
only knowledge of a given function f on a certain square [-τ1, τ1]×[-τ2, τ2].
What we need to prove is that
(αδσ)

∗ ◦ αδσ (ϕ)(z1, z2) = P1P2 (ϕ)(z1 + 2iδ, z2+2iδ), ϕ ∈ L20,2σ(R2).
Proposition 1: For each function ϕ ∈ H2δ(R2) the following equality

takes place:¡
Πδσ ◦ C22δ ◦Rτ1,τ2

¢
(ϕ) (z1, z2) = −4

RR
τ1,τ2

eiσ((z1+2iδ−u1)+(z2+2iδ−u2))×

×sinσ(z1 + 2iδ − u1) sinσ(z2 + 2iδ − u2)

(z1 + 2iδ − u1)(z2 + 2iδ − u2)
ϕ(u1, u2)du1du2,

where function ϕ is known only on [-τ1, τ1]×[-τ2, τ2].
Proof: Consider F (z1, z2) ∈ H2δ(R2). This function is isometric to F1

(ξ1, ξ2) = F (i(ξ1-δ),i(ξ2-δ)) ∈ H2(Π2), and the Laplace transform ϑ : f
∈ L2(R2) → ϑ (f) ∈ H2(Π2) is isometric as well. We can now build the
bijection L: L2([0, +∞]×[0, +∞]) → H2δ , defined as L(f)(z1, z2) = ϑ (f)(δ -
iz1, δ - iz2). The analytic expression for this transformation is

L(f)(z1, z2) =

+∞Z
0

+∞Z
0

e−t1δ−t2δf(t1, t2)eit1z1+it2z2dt1dt2.

The orthogonal projection pσ of L2([0, +∞]×[0, +∞]) into L2([0, 2σ]×[0,
2σ]), which is f → χ[0,2σ]×[0,2σ ]f, defines the orthogonal projection Πδσ : H2δ
→ L20,2σ(R

2).
Consider f ∈ L2([0, 2σ][0, 2σ]) and x1, x2 ∈ R, thus receiving:

L(f)(x1, x2) =
2δR
0

2δR
0

e−t1δ−t2δf(t1, t2)e−it1x1−it2x2dt1dt2 = =∗(e−δ•f)(x1, x2),

L(f)(z1, z2) =
+∞R
0

+∞R
0

e−t1δ−t2δf(t1, t2)eit1z1+it2z2dt1dt2.
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which is an element of L20,2σ(R
2). This element can be extended up to the

entire function L(f)(z1,z2), by replacing each x1 with z1 and each x2 with
z2. Since the isometry preserves orthogonality, we conclude that Πδσ ◦ L =
L ◦ pσ, and that the image, on Πδσ, of the function

g(z1, z2) =
+∞R
0

+∞R
0

e−t1δ−t2δf(t1, t2)eit1z1+it2z2dt1dt2

is the function

L(χ[0,2σ]×[0,2σ]f)(z1, z2) =
2σR
0

2σR
0

e−t1δ−t2δf(t1, t2)eitz1+itz2dt1dt2.

Since g = I∗(e−δ•f),

Πδσ(g)(z1, z2) = =∗(χ[0,2σ]×[0,2σ](e−δ•f))(z1, z2) = (eiσ• sinσ•π• g)(z1, z2).

Thus,

Πδσ(g)(z1, z2) =R
R

R
R

eiσ((z1−s1)+(z2−s2))
sinσ(z1 − s1)

π(z1 − s1)

sinσ(z2 − s2)

π(z2 − s2)
g(s1, s2)ds1ds2.

This is an analytic expression for Πδσ, the extension of P2, where δ is not
included. Now, consider the function

g(z1, z2) = (C
2
2δ ◦Rτ1,τ2)(ϕ)(z1, z2) =

τ1R
−τ1

τ2R
−τ2

ϕ(u1, u2)

(z1 − u1 + 2iδ)(z2 − u2 + 2iδ)
du1du2.

Using Fubini’s theorem, we obtain:¡
ΠδσC

2
2δRτ1,τ2

¢
(ϕ)(z1, z2) =R

R

R
R

Ã
τ1R
−τ1

τ2R
−τ2

ϕ(u1, u2)

(s1 − u1 + 2iδ)(s2 − u2 + 2iδ)
du1du2

!
×

×eiσ((z1−s1)+(z2−s2)) sinσ(z1 − s1)

π(z1 − s1)

sinσ(z2 − s2)

π(z2 − s2)
ds1ds2 =

=
τ1R
−τ1

τ2R
−τ2

ϕ(u1, u2)

(R
R

R
R

eiσ((z1−s1)+(z2−s2)) sinσ(z1 − s1) sinσ(z2 − s2)

π2(z1 − s1)(z2 − s2)(s1 − u1 + 2iδ)(s2 − u2 + 2iδ)

)
du1du2.
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Elementary calculations, using the Cauchy formula, give that the value
of the expression in brackets is

−4eiσ((z1−u1+2iδ)+(z2−u2+2iδ) sinσ(z1 − u1 + 2iδ)

(z1 − u1 + 2iδ)

sinσ(z2 − u2 + 2iδ)

(z2 − u2 + 2iδ)
,

which completes the proof of the proposition.

Corollary:
1) For each ϕ ∈H2δ , we haveΠσC22δRτ1,τ2(ϕ)(z1, z2)=-4π

2P1P2(ϕ)(z1+2iδ,
z2+2iδ), where z1, z2 ∈ C. P1P2(ϕ) is the orthogonal extension of Rτ1,τ2

(ϕ)=P2(ϕ|R2) on L0,2σ(R2), a subspace of L2(R2).
2) For each ϕ ∈ L0,2σ(R2) ((αδσ)* ◦ αδσ)(ϕ)(z1, z2)=P1P2(ϕ)(z1+2iδ,

z2+2iδ), where z1, z2 ∈ C.
Proof: This corollary is a consequence of the well-known fact that the

orthogonal projection P1 : L2(R2) → L20,2σ(R
2) is

f 7−→ R R
eiσ((t1−s1)+(t2−s2))

sinσ(t1 − s1)

π(t1 − s1)

sinσ(t2 − s2)

π(t2 − s2)
f(s1, s2)ds1ds2.

Lemma 1:
1) The operator (αδσ)

∗ ◦ αδσ = - (1/4π2)Πδσ ◦ C22δ ◦ Rτ1,τ2 ◦ iδσ is self-
adjoint, compact, and injective.

2) For each f ∈ L20,2σ(R2) (which is known only on [-τ1,τ1]×[-τ2,τ2]), the
operator B2δ : ϕ → ϕ + ((αδσ)

∗ ◦ αδσ)(f - ϕ) of the space L20,2σ(R2) into itself
has the only fixed point f.

Proof: The operator (αδσ)
∗ ◦ αδσ is self-adjoint by definition, and compact,

the latter follows from the analytic expression. Finally, if P1P2(ϕ) = 0, then
ϕ = 0, since P1P2(ϕ) is injective. Now, it is possible to define the iteration
gn+1 = B2δ (gn), with g0 = ((α

δ
σ)
∗ ◦ αδσ)(f); and the analytic expression for

gn is gn = (IdL20,2δ(R) − (IdL20,2δ(R) − (α
δ
σ)
∗ ◦ αδσ)n+1)(f).

The only possible fixed point of this iteration is f.
A similar discussion is true for three-dimensional spaces. In that case,

operator (αδσ)
∗ ◦ αδσ is of the form (αδσ)∗ ◦ αδσ(ϕ)(z1,z2,z3) = P1P2(ϕ)(z1+2iδ,

z2+2iδ, z3+2iδ), ϕ ∈ L20,2σ (R3), where z1,z2,z3 ∈ R, f ∈ H31.

5.2 Modification of the new method in the two- and three-
dimensional spaces

Let us add an additional parameter λ and study the operator Id - iλ(αδσ)
∗ ◦

αδσ for (iλ)
−1 /∈ {λδk, k ≥ 0}, and in particular, λ ∈ R∗. The operators B20,λ

and B2δ,λ are defined as
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B20,λ (ϕ) = ϕ + iλP1P2 (f - ϕ), ϕ ∈ L20,2σ(R2), δ = 0,

and

B2δ,λ (ϕ) = ϕ + iλ (αδσ)
∗ ◦ αδσ (f - ϕ), ϕ ∈ L20,2σ(R2), δ > 0;

while new iterations are introduced for both operators, respectively, as fol-
lows:

gn+1 = (Id - iλP1P2) gn + iλP1P2 (f)

and

gn+1 = (Id - iλ(αδσ)
∗ ◦ αδσ) gn + iλ(αδσ)∗ ◦ αδσ(f).

It is possible to modify them into new iterations by using the inverse
operators:

hn+1 = (Id - iλP1P2)−1 hn + (Id - iλP1P2)−1 (iλP1P2 (f))

and

hn+1 = (Id - iλ(αδσ)
∗ ◦ αδσ)−1 hn - (Id - iλ(αδσ)∗ ◦ αδσ)−1 (iλ(αδσ)∗ ◦ αδσ(f)).

It can be assumed that there are privileged pairs (δ, λ) that provide
an opportunity to control the rate of convergence. It is shown in [1], that
the best rate can be obtained (for the one-dimensional case) when δ = 0.
The same is true for the two- and three-dimensional cases.It is possible to
introduce some regularization processes that use these parameters as well.

A similar discussion is true for three-dimensional spaces.

6 Computational part of the research

In our research, different types of computing experiments were performed:
for both two and three-dimensional spaces. The experiments were performed
on Matlab under UNIX and showed good results. Some of the resulting
graphs can be found in Appendix A.
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Appendix A

The following graphs show the extrapolation result for the function

f2(x, y, z) = 7
sin(12x) sin(3y) sin(

1
2z)

π3xyz
from the cube [-1,1]×[-1,1]×[-1,1]

to the cube [-8,8]×[-8,8]×[-8,8], by using the Gershberg-Papoulis method in
three-dimensional space. The value of parameters: σ1 = 1/2, σ2 = 3, σ3 =
1/2. We use plane sections to plot the original and extrapolated functions.

Figure 1: The original function in place section x = 3.
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Figure 2: The extrapolated function in plane section x = 3.

Figure 3: The original function in plane section y = 4.5.
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Figure 4: The extrapolated function in plane section y = 4.5.

Figure 5: The original function in plane section z = 8.
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Figure 6: The extrapolated function in plane section z = 8.

The following graphs show the extrapolation result for the function

f2(x, y, z) = 7
sin(12x) sin(3y) sin(

1
2z)

π3 x y z
from the cube [-1,1]×[-1,1]×[-1,1]

to the cube [-8,8]×[-8,8]×[-8,8] using the new method in three-dimensional
space. The value of parameters: σ1 = 1/2, σ2 = 3, σ3 = 1/2. We created
graphs for different δ values, the graphs show that the best results are ob-
tained when δ is close to zero. We use plane sections to plot the original
and extrapolated functions.
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Figure 7: The original function in plane section x = 3.

Figure 8: The extrapolated functions in plane section x = 3, for δ = 1.
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Figure 9: The extrapolated functions in plane section x = 3, for δ = 0.5.

Figure 10: The extrapolated functions in plane section x = 3, for δ = 0.2.
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Figure 11: The extrapolated functions in plane section x = 3, for δ = 0.01.

Figure 12: The original function in plane section y = -2.
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Figure 13: The extrapolated function in plane section: y = -2, for δ = 1.

Figure 14: The extrapolated function in plane section: y = -2, for δ = 0.5.
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Figure 15: The extrapolated function in plane section: y = -2, for δ = 0.2.

Figure 16: The extrapolated function in plane section: y = -2, for δ = 0.01.
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