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Abstract

Maxwell’s equation for a waveguide whose medium has an inho-
mogeneous dielectric constant is formulated. The resulting modified
Helmholtz equation is transformed to a matrix generalized eigen value
problem using the method of moments. A complete numerical solution
of Helmholtz equation for nonhomogeneous rectangular waveguide has
been presented in this paper. This is implemented in MATLAB and
the numerical values for the modes of propagation are obtained.
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1 Introduction

The method of moments (MOM) is arguably the most developed numeri-
cal technique [1] for solving electromegnatic (EM) scattering and radiation
problems. Yet, the application of this method has been limited to resonant
and lower frequencies.
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A method of moments technique for the computational analysis of rec-
tangular waveguide is presented elsewhere [1]. The waveguides are used
to transmit electromagnetic signals. At high frequencies, this is the only
practical way of transmitting electromagnetic radiation. In a waveguide,
only special modes are transmitted and thus, the analysis of the eigenvalues
and their eigenvectors becomes very important in the electromagnetic. The
other advantage of the waveguides is that they can handle high power with
low losses e.g., attenuation loss, transmission loss etc. The electromagnetic
fields in these waveguides are given by the Maxwell equations. While these
equations are linear, the analytical solutions of them can only be obtained
in the spacial cases of boundary interface conditions. Due to this, electro-
magnetic applications have become more complex, however, the prediction
of their performance, in general, would be important. Therefore, numerical
methods have become a useful tool [2] to analyze the complex system of
equations.

Wave equations govern two types of the wave propagation, namely, the
propagation of mechanical waves and of the e1ectromagnetic waves. They
can often be written either in the second order or in a system of the first
order. Most of the literature focus on the numerical solution of the first order
wave equations because the second order can be transformed into the first
order [3]. But there are some cases that the second order wave equations
need to be solved. There are several explicit methods with second order
and higher order approximations [4, 5], but all the explicit methods have an
upper band limit, for the time step size used. Present method can be used
to find the solution of wave-equation for a waveguide having different region
of permittivity and also for any shaped waveguide.

The available literature lacks with the numerical solution of the inhomo-
geneous Maxwell equations, even for a rectangular waveguides [6, 7]. Thus,
the present work aims to fulfill this gap in the literature.

In this work, Maxwell equations for a rectangular waveguide, whose
medium has an inhomogeneous dielectric constant, are formulated. This
formulation results in the modified Helmholtz equations, which are trans-
formed into a generalized eigen value problem using the method of moments.
A complete numerical solution of this generalized eigen value problem for
inhomogeneous rectangular waveguide has been obtained using MATLAB.
The numerical values for modes of the propagation are obtained and com-
pared with the practical values.
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2 Problem statement

Assume that the waveguide is rectangular with dimensions a and b (Figure
1). The rectangular has been divided into four equal area regions. Let 1 and
2 be the permittivity for the lower (0 ≤ y ≤ b/2) regions 1 (0 ≤ x ≤ a/2)
and 2 (a/2 ≤ x ≤ a), respectively.

Figure 1: Rectangular waveguide cross section for four regions of permittiv-
ity

Similarly, 3 and 4 is the permittivity for the upper part (b/2 ≤ y ≤ b) of
the rectangle, i.e., regions 3 (0 ≤ x ≤ a/2) and 4 (a/2 ≤ x ≤ a), respectively.
A cross-section for this type of waveguide is shown in Figure 1.

The wave equation is given byµ
∂2

∂x2
+

∂2

∂y2
+ ω2µ + γ2

¶
ψ(x, y) = 0 (1)

subject to the boundary condition

ψ(0, y) = 0 = ψ(a, y) = ψ(x, 0) = ψ(x, b)

where ε(= ε0.εr) and µ(= µ0.µr) are the permittivity and the permeability
of the medium, respectively. The εr and µr are the relative permittivity and
permeability of the medium. The permittivity and the permeability of the
free space are given by

ε0 = 8.85× 10−12F/m (2a)

µ0 = 4π × 10−7H/m (2b)
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and
ω2µ + γ2 = h2

Here h2 is a constant, and the propagation constant γ is given as follow

γ = α+ jβ

Where, α and β are the attenuation constant and the phase constant, re-
spectively. The test function, ψ(x, y), can be chosen as sin or cos function.
By solving this equation, one can find the admissible values of propagation
constant (γ).

3 The method of moments analysis

To apply the method of moments, the electromagnetic field is expressed via
the potential orthonormalized modal function ψ(x, y)as follow

ψ(x, y) =
NX

m,n=1

Cmn sin(
mπx

a
) sin(

nπy

b
) (3)

Substitution of equation (3) into equation (1) gives

−
NX

m,n=1,2

[(
mπ

a
)2 + (

nπ

b
)2]Cmn sin(

mπx

a
) sin(

nπy

b
)

+ ω2µ (x, y)
NX

m,n=1,2

sin(
mπx

a
) sin(

nπy

b
)

+ γ2
NX

m,n=1,2

Cmn sin(
mπx

a
) sin(

nπy

b
) = 0 (4)

After multiplying equation (4) by

sin(
rπx

a
) sin(

sπy

b
)

and integrating over the cross-section of the waveguide, we get

−(ab
4
)[(

rπ

a
)2 + (

sπ

b
)2]Crs

+
NX

m,n=1,2

ω2µCmn

Z a

0

Z b

0
(x, y) sin(

mπx

a
) sin(

rπx

a
) sin(

sπy

b
)

sin(
nπy

b
)dx.dy + γ2

ab

4
Crs = 0 (5)
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where r, s = 1, 2 · · ·N .
Let D be the diagonal matrix of size N2×N2 whose [N(r−1)+s,N(r−

1) + s]th entry is

−ab
4
[(
rπ

a
)2) + (

sπ

b
)2)]

and let

A[r, s/m,n] =

Z a

0

Z b

0
x,y sin(

nπy

b
) sin(

rπx

a
) sin(

sπy

b
) sin(

mπx

a
)dx.dy

Now, we break this integration into four parts (of the rectangle, see
Fig. 1)

A[r, s/m, n] =

Z a/2

0

Z b/2

0
1 sin(

nπy

b
) sin(

rπx

a
) sin(

sπy

b
) sin(

mπx

a
)dx.dy

+

Z a

a/2

Z b/2

0
2sin(

nπy

b
)sin(

rπx

a
)sin(

sπy

b
)sin(

mπx

a
)dx.dy

+

Z a/2

0

Z b

b/2
3 sin(

nπy

b
) sin(

rπx

a
) sin(

sπy

b
) sin(

mπx

a
)dx.dy

+

Z a

a/2

Z b

b/2
4 sin(

nπy

b
) sin(

rπx

a
) sin(

sπy

b
) sin(

mπx

a
)dx.dy

Let

A[r, s/m,n] = I1[r, s/m,n] + I2[r, s/m, n] + I3[r, s/m, n] + I4[r, s/m, n]

where

I1[r, s/m, n] =
ab 1

4π2

×[ sin(r −m)π/2 sin(s− n)π/2

(r −m)(s− n)
− sin(r −m)π/2 sin(s+ n)π/2

(r −m)(s+ n)

−sin(r +m)π/2 sin(s− n)π/2

(r +m)(s− n)
+
sin(r +m)π/2 sin(s+ n)π/2

(r +m)(s+ n)
]

for r 6= m, s 6= n
(6)

and if r=m and s=n then

I1[r, s/m, n] = 1
ab

16
(7)
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and

I2[r, s/m, n] =
ab 2

4π2

×[ sin(s− n)π/2 sin(r +m)π/2

(s− n)(r +m)
− sin(s− n)π/2 sin(r −m)π/2

(s− n)(r −m)

−sin(r +m)π/2 sin(s+ n)π/2

(r +m)(s+ n)
+
sin(s+ n)π/2 sin(r −m)π/2

(s+ n)(r −m)
]

for r 6= m, s 6= n
(8)

and if r=m and s=n then

I2[r, s/m, n] = − 2
ab

16
(9)

Similarly,

I3[r, s/m, n] =
ab 3

4π2

×[ sin(r −m)π/2 sin(s+ n)π/2

(r −m)(s+ n)
− sin(r −m)π/2 sin(s− n)π/2

(r −m)(s− n)

−sin(r +m)π/2 sin(s+ n)π/2

(r +m)(s+ n)
+
sin(r +m)π/2 sin(s− n)π/2

(r +m)(s− n)
]

for r 6= m, s 6= n (10)

and if r=m and s=n then

I3[r, s/m, n] = − 3
ab

16
(11)

and

I4[r, s/m, n] =
ab 4

4π2

×[ sin(s+ n)π/2 sin(r +m)π/2

(s+ n)(r +m)
− sin(s− n)π/2 sin(r +m)π/2

(s− n)(r +m)

−sin(r −m)π/2 sin(s+ n)π/2

(r −m)(s+ n)
+
sin(s− n)π/2 sin(r −m)π/2

(s− n)(r −m)
]

for r 6= m, s 6= n (12)

and if r=m and s=n then

I4[r, s/m, n] = 4
ab

16
(13)
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Now

I[r, s/m, n] = I1[r, s/m, n]+I2[r, s/m, n]+I3[r, s/m, n]+I4[r, s/m,n] (14)

Substituing the values of I1, I2, I3 and I4 into equation (14). If r6= m and
s6=n then we get

I[r, s/m, n] =
ab( 1 − 2 − 3 + 4)

4π2·
sin(s− n)π/2

s− n
− sin(s+ n)π/2

s+ n

¸
·
sin(r −m)π/2

r −m
− sin(r +m)π/2

r +m

¸
(15)

and if r=m and s=n then

I[r, s/m, n] =
ab

16
[ 1 − 2 − 3 + 4] (16)

Here we assume that 1=4, 2=2, 3=1, 4=3 and

1 − 2 − 3 + 4 = 4 (17)

Now by substituting the value of equation (17) into equations (15) and (16),
we have

I[r, s/m,n] =
ab

π2

·
sin(s− n)π/2

s− n
− sin(s+ n)π/2

s+ n

¸
·
sin(r −m)π/2

r −m
− sin(r +m)π/2

r +m

¸
for r 6= m, s 6= n (18)

and at r=s and m=n we have

I[r, s/m, n] =
ab

4
(19)

Now, let A denote an N2×N2 matrix whose [N(r− 1)+ s,N(m− 1)+n]th

entry equals A[r, s/m, n], then the system of linear equation will be expressed
as

ω2µAc+Dc+ γ2(
ab

4
)c = 0 (20)

Here
ω2µA+D = B (21)
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Now equation (20) can be written as

Bc+ λc = 0 (22)

now the admissible values of γ are given by

γk = ±2
r
−λk
ab

(23)

k = 1, 2, 3 · · ·N2. where λk : k = 1, 2, 3 · · ·N2 are the eigen values of the
matrix

B = ω2µA+D (24)

4 Simulation results and discussion

The simulations have been carried out for the frequency, ω = 2π × 20 ×
109 rad/sec and for N = 8, 16, 24. The values of γ has been calculated
from the eigen values of the matrix, B = ω2µA + D. The approximate
theoretical values of the modes are also calculated by averaging the values of
the permittivities throughout the waveguide cross-section. The attenuation
constant is very low in the calculated values, which is always desirable.
Table 1 shows a comparison between the theoretical and calculated values.
The two values (theoretical and calculated) are seen to be very close to each
other in Table 1. This close agreement in between these values clearly show
a validity of the present solution procedure.

In this work, we have considered the structure with rectangular cross-
section. However, this method is not limited to any structure and can be
applied to any kind of structure, as shown in the Fig. 2. Similar procedure
can be followed to find the solution of the other (non-rectangular) structures.

In summary, we have started by writing down the modified Helmholtz
equation for the propagation of TM modes in a rectangular waveguide with
piecewise constant permittivity. The solution ψ(x, y) has been expanded in
terms of sine waves. Then the method of moments is applied to reduce the
original infinite dimensional problem to a finite dimensional matrix gener-
alized eigenvalue problem. The size of the matrices depend on the number
of sine-waves (N) used in the the expansion. As this number of sine-waves
grows, the size of the matrices also grow. In this paper, the propagation
modes are obtained using MATLAB for three sample values of N (see Ta-
ble 1). Numerical simulations show that the modes converge quite rapidly
when N > 15. It would be quite difficult to obtain a theoretical solution of
the modes as a function of N . This would involve determining the behavior
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Table 1: Comparison between the theoretical and calculated values of γ.
γ(theoretical values) γ(calculated values)

N=8 N=16 N=24
931.3i 937.26i 957.43i 964.83i
933.5i 937.26i 957.43i 964.83i
943.6i 937.25i 957.42i 964.83i
956.9i 937.24i 957.41i 964.82i
956.9i 937.23i 957.41i 964.82i
958.5i 937.22i 957.42i 964.81i
962.6i 937.20i 957.39i 964.80i
962.6i 937.18i 957.38i 964.79i
1001.6i 937.26i 957.40i 964.79i
1006.4i 937.25i 957.41i 964.78i
1185.1i 937.25i 957.37i 964.78i
1215.4i 937.24i 957.36i 964.77i
1401.1i 937.23i 957.35i 964.76i
1401.1i 937.21i 957.35i 964.75i
1823.1i 937.19i 957.37i 964.74i
1823.1i 937.18i 957.35i 964.74i

of the eigenvalues of the matrix as a function of its size. Specifically one
would need to address a problem of the following kind.

Let £1 and £2 be two linear partial differential operators and φn n =
1, 2, 3 · · ·n is a sequence of test functions. Then determine the behavior of
the solution, of the equation

fN (λ) = det(AN − λBN ) = 0

as N increases where

AN =

µµZ
D
φn(x, y)£1φm(x, y)dxdy

¶¶
and

BN =

µµZ
φn(x, y)£2φm(x, y)dxdy

¶¶
As far as known to us, none of the existing methods can be used to solve

such type of problem.
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Figure 2: Different possible shapes of waveguides in which present method
can be applied to obtain the propogation modes.

5 Conclusion

In this work, electromagnetic wave propagation analysis has been carried out
numerically. The Maxwell equations have been formulated for a inhomoge-
neous rectangular waveguide. The resulting modified Helmholtz equations
are transformed into a generalized eigen values problem using the method
of moments. The eigen values of the system of linear equations are ob-
tained by using MATLAB. These eigen values are used to obtain the wave
propagation coefficient (γ). A good correspondence was seen between the
theoretical and practical values. Attenuation is very low and the propaga-
tion is high. We could calculate the modes by using any numerical technique
like finite element method, finite difference method, but the reason for us-
ing method of moment here is due to it’s simplicity. Microwave elements

10



constructed using waveguide sections are pretty common. When allowance
is made for variable dielectric constant then one attains a greater degree of
freedom leading to a wide set of circuit parameters. In other words, a wider
range of impedances can be generates using the same waveguide section by
appropriately adjusting the distribution of the dielectric inside it.

The authors gratefully acknowledge Prof. Raj Senani for his constant
encouragement and provision of facilities for this research work.
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