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Abstract

In the theory of classical mechanics, the two-body central forcing
problem is formulated as a system of the coupled nonlinear second-
order deterministic differential equations. The uncertainty introduced
by the small, unmodelled stochastic acceleration, is not assumed in the
particle dynamics. The small, unmodelled stochastic acceleration pro-
duces an additional random force on a particle. Estimation algorithms
of a two-body dynamics, without introducing the stochastic pertur-
bation, may cause inaccurate estimation of a particle trajectory. In
particular, this paper examines the effect of the stochastic acceleration
on the motion of the orbiting satellite, and subsequently, the stochastic
estimation algorithm is developed by deriving the evolutions of condi-
tional means, and conditional variances for estimating the state of the
satellite. By linearizing the stochastic differential equations about the
mean of the state vector using first-order approximation, the mean tra-
jectory of the resulting first-order approximated stochastic differential
model does not preserve the perturbation effect felt by the orbiting
satellite; only the variance trajectory includes the perturbation effect.
For this reason, the effectiveness of the perturbed model is examined
on the basis of the second-order approximations of the system nonlin-
earity. The theory of the nonlinear filter of this paper is developed
using the Kolmogorov forward equation ‘between the observation’ and
a functional difference equation for the conditional probability density
‘at the observation’. The effectiveness of the second-order nonlinear
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filter is examined on the basis of its ability to preserve perturbation
effect felt by the orbiting satellite and the signal-noise ratio. The Kol-
mogorov forward equation, however, is not appropriate for numerical
simulations, since it is the equation for the evolution of the condi-
tional probability density. Instead of the Kolmogorov equation, one
derives the evolutions for the moments of the state vector, which in
our case consists of positions and velocities of the orbiting satellite.
Even these equations are not appropriate for the numerical simulations,
since they are not closed in the sense that computing the evolution of a
given moment involves the knowledge of higher-order moments. Hence
we consider the approximations to these moment evolution equations.
Simulation results are introduced to demonstrate the usefulness of an
analytic theory developed in this paper.

Keywords: Satellite tracking, stochastic differential equation, Brownian-
motion process, Fokker-Planck Kolmogorov equation, mean, variance.

1 Introduction

Since 1960, there have been important works on filtering. Kalman filter-
ing is one of the filtering approaches, having applicability in various fields
of signal processing and control. This filter is based upon a given linear
model for the states of the system and another linear model for the obser-
vation process. The linearity condition on the state-cum-observation model
severely restricts the applications of the Kalman filter. For the filtering of
non-linear systems, extended Kalman filtering was greatly investigated, by
the use of the first-order approximation of the non-linear stochastic model,
about the conditional means of the states [1-4]. However, the extended
Kalman filter suffers from bad initializations. The extended Kalman filter
is not accurate enough because of the inaccurate representation of the non-
linearities by the linearized model. Linearizing approximations made during
the evolutions of the conditional means, and variances for the extended
Kalman filter do not allow non-linear perturbation effects, which account
for the modelling error. Thus, the system theorists started looking for ap-
proximate filters that permit the closed-form implementation and preserve
some of the important qualitative characteristics of the exact filter. These
approximations are based upon the Taylor expansions of the non-linear func-
tions of the stochastic differential model, about the conditional mean of the
state vector. The second-order filter is one of the approximations. Locally
optimal filters were considered by Pugachev [3-5] who derived the condition-
ally optimal nonlinear filter by parametric optimization of a nonlinear filter.
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To realize Pugachev’s method, one needs to know the joint characteristic
function of the system state and the filter estimate. This function can be
obtained by solving the special non-random functional equation, which is
rather complicated, and takes much effort to obtain the desired solution, es-
pecially for the multidimensional case. The derivative-free filters (e.g. UKF,
PF) have been proposed in [6, 7]. UKF performs a stochastic linearization
through the use of a weighted statistical linear regression process. The per-
formance of UKF depends on the higher order moments of the distribution
which is scenario-dependent. In addition, when the initial condition of the
filter is poor, UKF may take a long time to settle [8]. One of the difficul-
ties encountered is regarding the choice of the approximate filter for a given
problem [9-13]. The general philosophy in choosing the adequate filter is
dictated by two factors: one, the complexity of the filter in the sense of the
number of moments required to be computed, and two, the variance, i.e. we
choose an order of the approximation so that variances of the state vector
are not too large as that would imply that the conditional means of the state
vector are not too random.

In what follows, we briefly survey some of the important developments in
non-linear filtering. Mehra examined the accuracy of the extended Kalman
filter in different co-ordinate systems for the real-time estimation or track-
ing of ballistic Re-entry Vehicle (RV) from its radar observations [14]. Itô
has developed and analyzed Gaussian filter for the non-linear stochastic sys-
tems, in which conditional probability density is approximated by a sum of
Gaussian distributions [15]. Shaikin established a finite- dimensional approx-
imation for the optimum filtering equations of the Markov diffusion process
described by a stochastic system, where an approximate filter is derived as
Kushner-Stratonovich equation with finite Peano series [16]. Kushner simu-
lated a Gaussian-type approximate filter for a second-order system (Vander
Pol equation) with linear measurements [11]. Third-order moments were
neglected, and fourth-order moments were approximated, using Gaussian
assumptions. Shrish et al. derived the finite-dimensional filter for the re-
strictive stochastic model [17]. An accurate modelling procedure coupled
with effective filtering algorithm can increase the efficacy of the estimation
procedure [18]. Accurate modelling procedure is accomplished by intro-
ducing the small, unmodelled stochastic acceleration felt by the orbiting
satellite. The problem of accurate modelling procedure has received atten-
tion in literature. In [19, 20], the authors have examined the effect of the
stochastic acceleration on the dynamical model of a spacecraft trajectory.
In Scheeres’ analysis, the integration of the Ricatti equation was carried out
for orbit uncertainty of a one-dimensional force-free motion incorporating a
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stochastic analysis with correlation time t. The evolutions of variances were
derived using the Ricatti equation. However, the problem of estimating the
states of the stochastically perturbed orbiting particle from noisy measure-
ments, especially accounting for the ‘stochastic acceleration’ in equation of
the motion, has not been examined in detail. In this paper, the stochastic
differential equation formalism for the non-linear problem of concern here,
would be the subject of investigation.

The purpose of this paper is to develop a non-linear continuous-discrete
time filter, for the two-body problem (satellite-earth system), formulated in
the form of a stochastic non-linear differential system. The performance of
the non-linear filter is examined, on the basis of its ability to preserve per-
turbation effect felt by the orbiting satellite and the signal-noise ratio. This
paper utilizes the Kolmogorov forward equation for the mean and variance
evolutions ‘between the observations’ and the functional difference equation
for the conditional probability density ‘at the observation’. This paper dis-
cusses the stochastically perturbed two-body problem, treating the effect of
the stochastic acceleration as the ‘state-parameter-independent noise per-
turbation’.

This paper is organized as follows: Section 2 deals with a stochastically
perturbed non-linear model with Brownian motion inputs and nonlinear
measurement model for the satellite tracking problem. In Section 3, the
evolutions of conditional means, and conditional co-variances are derived
for the stochastic non-linear differential model of the satellite tracking prob-
lem. In Section 4, simulation results are given to show the feasibility of the
analysis results derived in Section 3. Concluding remarks are presented in
Section 5.

2 Equations of motion

Reference [14] offers a good discussion of how to handle re-entry vehicle (or
satellite) target models (a topic that, unfortunately, is usually absent from
other discussions concerned with the same type of target tracking applica-
tions) and provides a derivation of the particulars from first principles as well
as providing an accounting and motivation for use of the various coordinate
systems. A rigorous analysis of other important modelling considerations
are treated in [21]. we follow a similar path in the choice of mathematical
models used here.

In our investigation, a Keplerian trajectory is introduced within a de-
tailed simulation of the exoatmospheric target motion to include the effect
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of an inverse square pull of gravity and use is made of a more sophisti-
cated filter model to handle tracking in the presence of these inverse square
nonlinearities and state independent noises modelled using Brownian mo-
tion processes. Use of this more exacting methodology to represent gravity
more realistically requires that we depart from just the use of simplified co-
variance analysis (essentially corresponding to evaluation of a Cramer-Rao
lower bound for the estimation objective in the exoatmospheric regime of
no process noise being present as used in earlier investigations [22, 23]), and
instead now requires that we incorporate full nonlinear filtering techniques
(and the associated standard approximations).

The orbital elements of a satellite in three dimensional space is deter-
mined by its position and velocity vectors at a given epoch, and the two
body forces acting on it. Once the position and velocity vectors are ob-
tained in inertial frame, the orbital motion of the satellite is described by
the following equation

d
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(1)

where (xt, yt, zt)T represents the position vector, (vxt , vyt , vzt)
T represents

the velocity vector in Earth-centered inertial (ECI) frame (the ECI frame
as the one in which x-axis is along the first point of aries, z-axis along
the earth’s spin axis and y-axis completes the orthogonal triad of the right
handed system), G is the gravitational constant and M is the mass of the
central reference body. Accurate modelling procedure is accomplished by
introducing small perturbation effect felt by the orbiting satellite, which
leads to the stochastic framework. Thus, our model is different and better
than that of the deterministic dynamics. The approach of this paper is a
direct demonstration of the application of the motion of a satellite in an
orbit. An example of how random disturbances arise in the motion of an
orbiting satellite is via the presence of distributed matter in the vicinity
of the field of motion like meteors, comets and asteroids. These distrib-
uted matter may also be in motion, and the gravitational force exerted by
this distributed matter on the satellite. Mann et. al. have described the
comets and asteroids as the major sources of the dust production [25]. Dust
collisional fragmentation, sublimation, radiation pressure acceleration and
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rotational busting are the major causes of the dust loss processes. In their
paper, they talk about the recent observations of the Sun-grazing comets.
The dust particles are small and randomly distributed. The randomly dis-
tributed dust produces additional random force on the orbiting satellite. It
is always strived that the estimated trajectory be close to the actual tra-
jectory. The accurate modelling procedure increases the effectiveness of the
estimated trajectory. The accurate modelling procedure is accomplished by
introducing small perturbations felt by the orbiting satellite. For these rea-
sons, it is important to introduce the dust perturbations on the orbiting
satellite. It is a well known fact that random disturbances in the motion of
a particle can be modelled as Gaussian white noise to a good degree of accu-
racy. Gaussianity of the random disturbance is a consequence of the central
limit theorem according to which, if the random force is the cumulative sum
of a very large number of small, independent random effects, then it has
approximately a Gaussian law. The white property is a consequence of the
fact that the disturbances at different times are independent, for example,
the molecular kicks on a polar particle in a warm liquid at different times
are independent owing to rapid random independent motions of the mole-
cules. After introducing the effect of stochastic acceleration into the motion
of the orbiting satellite, the equation of motion in the stochastic differential
equation formalism is stated as

dξt = f(ξt)dt+G(t)dBt (2)

where ξt =



xt
yt
zt
vxt
vyt
vzt

, f(ξt) =


vxt
vyt
vzt−GMxt

(x2t+y
2
t+z

2
t )
3/2

−GMyt
(x2t+y

2
t+z

2
t )
3/2

−GMzt
(x2t+y

2
t+z

2
t )
3/2


,

G(t) =



0 0 0
0 0 0
0 0 0
σvx 0 0
0 σvy 0
0 0 σvz


, and dBt =

 dB1t
dB2t
dB3t
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Figure 1: Radar-satellite geometry (see [8]).

Figure 2: Coordinate systems centered at the radar (see [8]).
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In order to use the ECI coordinate frame and system equations, the
measurement equations are of a form addressed below. The measurement
equations used for the present sensor model are as obtained from Figs. 1
and 2. The resulting sensor measurements in terms of range R, and the
direction cosines u and v, to the target RV are

R =
p
x02 + y02 + z02 (3)

u =
x0

R
(4)

v =
y0

R
(5)

where x0, y0, and z0 are as in Fig. 2 (and are to be defined next). In Fig.
2, the local coordinates x, y, z are located at the center of the sensor face
in the plane of the array. In this coordinate system, z is directed along the
local vertical and x and y lie in the horizontal plane, with x pointing East
and y pointing North. From ([14], sec. II), these local level coordinates
x, y, z can be represented in terms of x0, y0, z0 coordinates via the following
transformation  x0

y0

z0

 = T

 x
y
z


where

T =


cosλ −sinλ 0

cosφsinλ cosφcosλ −sinφ
sinφsinλ sinφsinλ cosφ


as the appropriate change of coordinates corresponding to the rotation de-
picted in Fig. 2, where the above parameters λ and φ are also defined in
Fig. 2. The coordinates x0, y0, z0 are oriented so that z0 is normal to the face
of the sensor array, and y0 lies on the face of the array, and x0 lies along the
intersection of the sensor face and the horizontal plane.

The above received sensor signal-processed measurement can be repre-
sented in terms of the measurement of target range (as appropriate for a
radar or other active sensor if not range-denied due to jamming), elevation,
and azimuth as, respectively [24]

rtk =
q
x2tk + y2tk + z2tk (6)
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Etk = arctan

 ztkq
x2tk + y2tk

 (7)

Atk = arctan

·
xtk
ytk

¸
(8)

where the length in (6) is identical to the length in (3) since the transfor-
mation T is a rotation (and as such is an orthogonal transformation which
preserves lengths). The expressions of (6)-(8) correspond to the following
measurement equation:

ζ(tk) = h(ξtk) + ν(tk) (9)

or

ζ(tk) =

 rtk
Etk

Atk

+ ν(tk) (10)

where ν(tk) is an m-vector (m = 3) Gaussian white measurement noise,
ν(tk) ∼ N(0, Rk), Rk > 0. ξt0 , {Bt} and {νk} are assumed independent.
The Gaussian white measurement noise, ν(tk) has a covariance that is of
the form [24].

Rk =


σ2r 0 0
0 σ2E 0

0 0
σ2E

cos2(E)

 (11)

3 A continuous-discrete filter

In case of less observation rates and lack of communication of the orbiting
satellite with measurement station, the problem of estimating the states
of the orbiting satellite i.e. accurate positioning of the satellite reduces to
the prediction algorithm between the observations. Here, first we explain
the analysis for scalar case and subsequently, extended to vector case. The
whole analysis can be divided into two parts: first ‘between the observations’
and secondly, ‘at the observations’.
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3.1 Between the observations

Mean and Variance evolutions are

dξ̂t
dt
= f̂(ξt, t) (12)

dP̂t
dt

= 2(cξtf − ξ̂tf̂) +
dg2Q (13)

In matrix vector format, the above equations become

dξ̂t
dt
= f̂(ξt, t) (14)

dP̂t
dt

= ([ξtfT − ξ̂tf̂
T ) + (dfξTt − f̂ ξ̂t

T
) + \GQGT (15)

where the state vector ξt is n× 1, system nonlinearity f(ξ̂t, t) is n× 1 and
G(t) is n× r for r-dimensional Brownian motion process. For the numerical
simulations, component version is more convenient form. For this reason,
we utilize the component versions of the vector case for the analysis. In
component version, the above become

dξ̂it = f̂i(ξt, t)dt (16)

(dPt)ij =
¡
(dξifj − ξ̂if̂j) + (dfiξj − f̂iξ̂j) + (

\GQGT )ij
¢
dt tk−1 ≤ t < tk (17)

where

ξ̂it = E(ξit | ζtk−1)andPij = E
³
(ξit−E(ξit | ζtk−1))(ξjt−E(ξjt | ζtk−1)) | ζtk−1

´
.

The above equations describe the evolutions of the exact filter, which
is infinite dimensional. Because of infinite dimensionalities involved, the
numerical implementation is not possible. The mean trajectory for the dust-
perturbed satellite using first-order approximation does not include variance
term in mean evolution. The term \GQGT in variance evolution accounts for
the stochastic perturbation felt by the orbiting satellite ([1] p.363). For this
reason, the first order approximation does not preserve perturbation effects
in mean evolution. On the other hand, the variance evolution using first-
order approximation for the dust-perturbed model includes perturbation
effects i.e. \GQGT . The main interest in first-order approximate model is
owing to computational simplicity as well as it representing a ‘nearly’ linear
yet nonlinear system [26].

10



In order to account for the stochastic perturbation in the mean evo-
lution, we use the second-order approximation in the mean evolution. The
second-order approximation includes the second-order partials of the system
nonlinearity f(ξt, t), and variance terms in the mean trajectory, which leads
to better estimation of the trajectory [27]. For this reason, we introduce the
second-order Taylor expansions of the system nonlinearity f(ξt, t), measure-
ment nonlinearity h(ξt, t) about the conditional mean. After second-order
approximation, we get

dξ̂ti = fi(ξ̂t, t)dt+
1

2

nX
j,k=1

Pjk
∂2fi(ξ̂, t)

∂ξj∂ξk
dt (18)

(dPt)ij =
³ nX
k=1

Pik
∂fj(ξ̂, t)

∂ξk
+

nX
k=1

Pjk
∂fi(ξ̂, t)

∂ξk
+ (\GQGT )ij

´
dt (19)

The discussion on equation (18) and (19) using the ‘Kolmogorov forward
equation’ is given separately in ‘appendix A’ of the paper. This paper dis-
cusses 6-dimensional diffusion equation. As a result of this, the size of the
conditional mean vector of the process ξt is 6 × 1 and the number of en-
tries in conditional variance matrix is 6 +

µ
6
2

¶
= 21. Equation (18) and

(19) in conjunction with equation (2) for the nonlinear satellite tracking
problem considered in this paper, we have the following mean and variance
evolutions:

dx̂t = v̂xtdt (20)

dŷt = v̂ytdt (21)

dẑt = v̂ztdt (22)

dv̂xt =
−GMx̂t

(cx2t + by2t + bz2t)3/2 dt+ (23)Ã
Pxtxt

GMx̂t(9 by2t + 9 bz2t − 7cx2t)
2(cx2t + by2t + bz2t)7/2 − Pxtyt

3GMŷt(4cx2t − by2t − bz2t)
(cx2t + by2t + bz2t)7/2

−Pxtzt
3GMẑt(4cx2t − by2t − bz2t)
(cx2t + by2t + bz2t)7/2 + Pytyt

GMx̂t(cx2t − 4 by2t + bz2t)
2(cx2t + by2t + bz2t)7/2

−Pytzt
15GMx̂tŷtẑt

(cx2t + by2t + bz2t)7/2 + Pztzt
GMx̂t(cx2t + by2t − 4 bz2t)
2(cx2t + by2t + bz2t)7/2

!
dt
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dv̂yt =
−GMŷt

(cx2t + by2t + bz2t)3/2 dt+ (24)Ã
Pxtxt

GMŷt( by2t + bz2t − 4cx2t)
2(cx2t + by2t + bz2t)7/2 − Pxtyt

3GMx̂t(4 by2t −cx2t − bz2t)
(cx2t + by2t + bz2t)7/2

−Pxtzt
15GMx̂tŷtẑt

(cx2t + by2t + bz2t)7/2 + Pytyt
GMŷt(9cx2t + 9 bz2t − 7 by2t)
2(cx2t + by2t + bz2t)7/2

−Pytzt
3GMẑt(4 by2t −cx2t − bz2t)
(cx2t + by2t + bz2t)7/2 + Pztzt

GMŷt(cx2t + by2t − 4 bz2t)
2(cx2t + by2t + bz2t)7/2

!
dt

dv̂zt =
−GMẑt

(cx2t + by2t + bz2t)3/2 dt+ (25)Ã
Pxtxt

GMẑt(cx2t + by2t − 4 bz2t)
2(cx2t + by2t + bz2t)7/2 − Pxtyt

15GMx̂tŷtẑt

(cx2t + by2t + bz2t)7/2
−Pxtzt

3GMx̂t(4 bz2t −cx2t − by2t)
(cx2t + by2t + bz2t)7/2 + Pytyt

GMẑt(cx2t + bz2t − 4 by2t)
2(cx2t + by2t + bz2t)7/2

−Pytzt
3GMŷt(4 bz2t −cx2t − by2t)
(cx2t + by2t + bz2t)7/2 + Pztzt

GMẑt(9cx2t + 9 by2t − 7 bz2t)
2(cx2t + by2t + bz2t)7/2

!
dt

and the variance evolutions are

dPxtxt = 2Pxtvxtdt (26)

dPxtyt = dPytxt = (Pxtvyt + Pytvxt )dt (27)

dPxtzt = dPztxt = (Pxtvzt + Pztvxt )dt (28)

dPxtvxt = dPvxtxt =

Ã
− Pxtxt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 (29)

+Pxtyt
3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 + Pxtzt
3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 + Pvxtvxt

!
dt

dPxtvyt = dPvytxt =

Ã
Pxtxt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 (30)

−Pxtyt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2 + Pxtzt

3GMŷtẑt

(cx2t + by2t + bz2t)5/2 + Pvytvxt

!
dt
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dPxtvzt = dPvztxt =

Ã
Pxtxt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (31)

+Pxtyt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pxtzt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2 + Pvztvxt

!
dt

dPytyt = 2Pytvytdt (32)

dPytzt = dPztyt = (Pytvzt + Pztvyt )dt (33)

dPytvxt = dPvxtyt =

Ã
− Pxtyt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 (34)

+Pytyt
3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 + Pytzt
3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 + Pvxtvyt

!
dt

dPytvyt = dPvytyt =

Ã
Pxtyt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 (35)

−Pytyt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2 + Pytzt

3GMŷtẑt

(cx2t + by2t + bz2t)5/2 + Pvytvyt

!
dt

dPytvzt = dPvztyt =

Ã
Pxtyt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (36)

+Pytyt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pytzt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2 + Pvytvzt

!
dt

dPztzt = 2Pztvztdt (37)

dPztvxt = dPvxtzt =

Ã
− Pxtzt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 (38)

+Pytzt
3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 + Pztzt
3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 + Pvxtvzt

!
dt
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dPztvyt = dPvytzt =

Ã
Pxtzt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 (39)

−Pytzt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2 + Pztzt

3GMŷtẑt

(cx2t + by2t + bz2t)5/2 + Pvytvzt

!
dt

dPztvzt = dPvztzt =

Ã
Pxtzt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (40)

+Pytzt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pztzt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2 + Pvztvzt

!
dt

dPvxtvxt = 2

Ã
− Pxtvxt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 (41)

+Pytvxt
3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 + Pztvxt
3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 + σ2vxt

!
dt

dPvxtvyt = dPvytvxt =

Ãµ
Pxtvxt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 (42)

−Pytvxt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2 + Pztvxt

3GMŷtẑt

(cx2t + by2t + bz2t)5/2
¶

+

µ
− Pxtvyt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 + Pytvyt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2
+Pztvyt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2
¶!

dt
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dPvxtvzt = dPvztvxt =

Ãµ
Pxtvxt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (43)

+Pytvxt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pztvxt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2

¶

+

µ
− Pxtvzt

GM( by2t + bz2t − 2cx2t)
(cx2t + by2t + bz2t)5/2 + Pytvzt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2
+Pztvzt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2
¶!

dt

dPvytvyt = 2

Ã
Pxtvyt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 (44)

−Pytvyt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2 + Pztvyt

3GMŷtẑt

(cx2t + by2t + bz2t)5/2 + σ2vyt

!
dt

dPvytvzt = dPvztvyt =

Ãµ
Pxtvyt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (45)

+Pytvyt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pztvyt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2

¶

+

µ
Pxtvzt

3GMx̂tŷt

(cx2t + by2t + bz2t)5/2 − Pytvzt
GM(cx2t + bz2t − 2 by2t)
(cx2t + by2t + bz2t)5/2

+Pztvzt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2
¶!

dt

dPvztvzt = 2

Ã
Pxtvzt

3GMx̂tẑt

(cx2t + by2t + bz2t)5/2 (46)

+Pytvzt
3GMŷtẑt

(cx2t + by2t + bz2t)5/2 − Pztvzt
GM(cx2t + by2t − 2 bz2t)
(cx2t + by2t + bz2t)5/2 + σ2vzt

!
dt

Note that the evolutions of the mean and variance, i.e. equations from
(20)-(46) involve the first-order and second-order partial of the system non-
linearity.
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3.2 At the observation

First, we state the mean and variance evolutions for continuous-discrete
filter for scalar case and subsequently, the evolutions are extended to vector
case. The evolutions are given by ([1], p. 363)

ξ̂
tk
tk
= ξ̂

tk−1
tk

+ (cξh− ξ̂ĥ)[ \(h− ĥ)2 +R]−1(ζtk − ζ̂
tk−1
tk

) (47)

P tk
tk
= P

tk−1
tk
− (cξh− ξ̂ĥ)[ \(h− ĥ)2 +R]−1(chξ − ĥξ̂) (48)

The above equations in matrix-vector format can be expressed as

ξ̂
tk
tk
= ξ̂

tk−1
tk

+ (dξhT − ξ̂ĥT )[
¡
(h− ĥ)(h− ĥ)T

¢b+R]−1(ζtk − ζ̂
tk−1
tk

) (49)

P tk
tk
= P

tk−1
tk
− (dξhT − ξ̂ĥT )[

¡
(h− ĥ)(h− ĥ)T

¢b+R]−1(dhξT − ĥξ̂
T
) (50)

For numerical simulations, the component version is more attractive and
convenient form. In component version, above equations become

(ξ̂
tk
tk
)i = (ξ̂

tk−1
tk

)i + (cξih− ξ̂iĥ)
T [
¡
(h− ĥ)(h− ĥ)T

¢b+R]−1(ζtk − ζ̂
tk−1
tk

) (51)

(P tk
tk
)ij = (P

tk−1
tk

)ij− (cξih− ξ̂iĥ)T [¡(h− ĥ)(h− ĥ)T ¢b+R]−1(dhξj− ĥξ̂j) (52)
After second-order approximation, we get

(ξ̂
tk
tk)i = (ξ̂

tk−1
tk )i +

ÃX
k

Pik
∂hT (ξ̂, tk)

∂ξk

!ÃX
p,q

Ppq
∂h(ξ̂, tk)

∂ξp

∂hT (ξ̂, tk)

∂ξq

+R− 1
4

X
j,k

X
l,m

PjkPlm
∂2h(ξ̂, tk)

∂ξj∂ξk

∂2hT (ξ̂, tk)

∂ξl∂ξm

!−1
(53)

×
Ã
ζtk − h(ξ̂, tk)− 1

2

X
jk

pjk
∂2h(ξ̂, tk)

∂ξj∂ξk

!

(P tk
tk )ij = (P

tk−1
tk )ij −

ÃX
k

Pik
∂hT (ξ̂, tk)

∂ξk

!ÃX
p,q

Ppq
∂h(ξ̂, tk)

∂ξp

∂hT (ξ̂, tk)

∂ξq

+R− 1
4

X
j,k

X
l,m

PjkPlm
∂2h(ξ̂, tk)

∂ξj∂ξk

∂2hT (ξ̂, tk)

∂ξl∂ξm

!−1
(54)

×
ÃX

k

Pkj
∂h(ξ̂, tk)

∂ξk

!
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Let

r̂
tk−1
tk

=

rcx2tk−1tk
+ by2tk−1tk

+ bz2tk−1tk
(55)

and
r̂
2tk−1
tk

=cx2tk−1tk
+ by2tk−1tk

+ bz2tk−1tk
(56)

Ê
tk−1
tk

= arctan

 ẑ
tk−1
tkqcx2tk−1tk
+ by2tk−1tk

 (57)

Â
tk−1
tk

= arctan

Ã
x̂
tk−1
tk

ŷ
tk−1
tk

!
(58)

ρ̂
tk−1
tk

=

rcx2tk−1tk
+ by2tk−1tk

(59)

ρ̂
2tk−1
tk

=cx2tk−1tk
+ by2tk−1tk

(60)

Making the use of equations from (6)-(8) and (53)-(60), the mean evo-
lutions are

(ξ̂
tk
tk
)i = (ξ̂

tk−1
tk

)i +HY Z (61)

where

H =

ÃX
k

Pik
∂hT (ξ̂, tk)

∂ξk

!
(1× 3)

H =

µ
H11 H12 H13

¶
=

Ã P
k Pik

∂h1(ξ̂,tk)
∂ξk

P
k Pik

∂h2(ξ̂,tk)
∂ξk

P
k Pik

∂h3(ξ̂,tk)
∂ξk

!

H11 = P
tk−1
ixtk

x̂
tk−1
tk

r̂
tk−1
tk

+ P
tk−1
iytk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P
tk−1
iztk

ẑ
tk−1
tk

r̂
tk−1
tk

(62)

H12 = P
tk−1
ixtk

−ẑtk−1tk
x̂
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P
tk−1
iytk

−ẑtk−1tk
ŷ
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P
tk−1
iztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

(63)
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H13 = P
tk−1
ixtk

ŷ
tk−1
tk

ρ̂
2tk−1
tk

− P
tk−1
iytk

x̂
tk−1
tk

ρ̂
2tk−1
tk

(64)

and

Y =

ÃX
p,q

Ppq
∂h(ξ̂, tk)

∂ξp

∂hT (ξ̂, tk)

∂ξq

+R− 1
4

X
j,k

X
l,m

PjkPlm
∂2h(ξ̂, tk)

∂ξj∂ξk

∂2hT (ξ̂, tk)

∂ξl∂ξm

!−1
(3× 3)

Y =


Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33



Y11 =
1

∆
(a5a9 − a6a8), Y12 =

1

∆
(−a2a9 + a3a8),

Y13 =
1

∆
(a2a6 − a3a5), Y21 =

1

∆
(−a4a9 + a6a7)

Y22 =
1

∆
(a1a9 − a3a7), Y23 =

1

∆
(−a1a6 + a3a4),

Y31 =
1

∆
(a4a8 − a5a7), Y32 =

1

∆
(−a1a8 + a2a7)

Y33 =
1

∆
(−a1a5 + a2a4),

∆ = a1a5a9 − a1a6a8 − a4a2a9 + a4a3a8 + a7a2a6 − a7a3a5
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a1 =
x̂
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkxtk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
xtkytk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
xtkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!
(65)

+
ŷ
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkytk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkytk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!

+
ẑ
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkztk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkztk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ztkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!

+σ2R −
1

4

Ã
P tk−1
xtkxtk

ŷ2
tk−1
tk

+ ẑ2
tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkytk

x̂
tk−1
tk

ŷ
tk−1
tk

r̂
3/2tk−1
tk

−2P tk−1
xtkztk

x̂
tk−1
tk

ẑ
tk−1
tk

r̂
3/2tk−1
tk

+ P tk−1
ytkytk

cx2tk−1tk
+ bz2tk−1tk

r̂
3/2tk−1
tk

+2P tk−1
ytkztk

−ŷtk−1tk
ẑ
tk−1
tk

r̂
3/2tk−1
tk

+ P tk−1
ztkztk

cx2tk−1tk
+ by2tk−1tk

r̂
3/2tk−1
tk

!2

a2 =
x̂
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkxtk

−ẑtk−1tk
x̂
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
xtkytk

−ẑtk−1tk
ŷ
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
xtkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!
(66)

+
ŷ
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkytk

−ẑtk−1tk
x̂
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
ytkytk

−ẑtk−1tk
ŷ
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
ytkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!

+
ŷ
tk−1
tk

r̂
tk−1
tk

Ã
P tk−1
xtkztk

−ẑtk−1tk x̂
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
ytkztk

−ẑtk−1tk ŷ
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
ztkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!

−1
4

Ã
P tk−1
xtkxtk

ŷ2
tk−1
tk + ẑ2

tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkztk

x̂
tk−1
tk ẑ

tk−1
tk

r̂
3/2tk−1
tk

+P tk−1
ytkytk

cx2tk−1tk + bz2tk−1tk

r̂
3/2tk−1
tk

+ 2P tk−1
ytkztk

−ŷtk−1tk ẑ
tk−1
tk

r̂
3/2tk−1
tk

+ P tk−1
ztkztk

cx2tk−1tk + by2tk−1tk

r̂
3/2tk−1
tk

!

×
Ã
P tk−1
xtkxtk

ẑ
tk−1
tk

by2tk−1tk (cx2tk−1tk − by2tk−1tk − bz2tk−1tk ) + 2ẑ
tk−1
tk

cx4tk−1tk

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk
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+2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk ẑ

tk−1
tk

(3cx2tk−1tk
+ 3 by2tk−1tk

+ bz2tk−1tk
)

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk

+2P tk−1
xtkztk

x̂
tk−1
tk

( bz2tk−1tk
−cx2tk−1tk

− by2tk−1tk
)

r̂
4tk−1
tk

ρ̂
tk−1
tk

+2P tk−1
ytkztk

ŷ
tk−1
tk

( bz2tk−1tk
−cx2tk−1tk

− by2tk−1tk
)

r̂
4tk−1
tk

ρ̂
tk−1
tk

+P tk−1
ytkytk

ẑ
tk−1
tk

cx2tk−1tk
( by2tk−1tk

−cx2tk−1tk
− bz2tk−1tk

) + 2ẑ
tk−1
tk

by4tk−1tk

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk

+P tk−1
ztkztk

−2ẑtk−1tk
ρ̂
tk−1
tk

r̂
4tk−1
tk

!

a3 =
x̂
tk−1
tk

r̂
tk−1
tk

µ
P tk−1
xtkxtk

ŷ
tk−1
tk

ρ̂
2tk−1
tk

− P tk−1
xtkytk

x̂
tk−1
tk

ρ̂
2tk−1
tk

¶
(67)

+
ŷ
tk−1
tk

r̂
tk−1
tk

µ
P tk−1
xtkytk

ŷ
tk−1
tk

ρ̂
2tk−1
tk

− P tk−1
ytkytk

x̂
tk−1
tk

ρ̂
2tk−1
tk

¶

+
ẑ
tk−1
tk

r̂
tk−1
tk

µ
P tk−1
xtkztk

ŷ
tk−1
tk

ρ̂
2tk−1
tk

− P tk−1
ytkztk

x̂
tk−1
tk

ρ̂
2tk−1
tk

¶

−1
4

Ã
P tk−1
xtkxtk

−2x̂tk−1tk
ŷ
tk−1
tk

ρ̂
4tk−1
tk

+ 2P tk−1
xtkytk

cx2tk−1tk
− by2tk−1tk

ρ̂
4tk−1
tk

+ P tk−1
ytkytk

2x̂
tk−1
tk

ŷ
tk−1
tk

ρ̂
4tk−1
tk

!

×
Ã
P tk−1
xtkxtk

by2tk−1tk + bz2tk−1tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkztk

x̂
tk−1
tk ẑ

tk−1
tk

r̂
3/2tk−1
tk

+P tk−1
ytkytk

cx2tk−1tk + bz2tk−1tk

r̂
3/2tk−1
tk

+ 2P tk−1
ytkztk

−ŷtk−1tk ẑ
tk−1
tk

r̂
3/2tk−1
tk

+ P tk−1
ztkztk

ρ̂
2tk−1
tk

r̂
3/2tk−1
tk

!

a4 =
−ẑtk−1tk x̂

tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

Ã
P tk−1
xtkxtk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
xtkytk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
xtkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!
(68)

+
−ẑtk−1tk ŷ

tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

Ã
P tk−1
xtkytk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkytk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!
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+
ρ̂
tk−1
tk

r̂
2tk−1
tk

Ã
P tk−1
xtkztk

x̂
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ytkztk

ŷ
tk−1
tk

r̂
tk−1
tk

+ P tk−1
ztkztk

ẑ
tk−1
tk

r̂
tk−1
tk

!

−1
4

Ã
P tk−1
xtkxtk

by2tk−1tk
+ bz2tk−1tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkytk

x̂
tk−1
tk

ŷ
tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
xtkztk

x̂
tk−1
tk

ẑ
tk−1
tk

r̂
3/2tk−1
tk

+P tk−1
ytkytk

x̂2
tk−1
tk + ẑ2

tk−1
tk

r̂
3/2tk−1
tk

− 2P tk−1
ytkztk

ŷ
tk−1
tk ẑ

tk−1
tk

r̂
3/2tk−1
tk

+ P tk−1
ztkztk

ρ̂
2tk−1
tk

r̂
3/2tk−1
tk

!

×
Ã
P tk−1
xtkxtk

ẑ
tk−1
tk

by2tk−1tk (cx2tk−1tk − by2tk−1tk − bz2tk−1tk ) + 2ẑ
tk−1
tk

cx4tk−1tk

r̂
4tk−1
tk ρ̂

3/2tk−1
tk

+2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk ẑ

tk−1
tk (3cx2tk−1tk + 3 by2tk−1tk + bz2tk−1tk )

r̂
4tk−1
tk ρ̂

3/2tk−1
tk

+

2P tk−1
xtkztk

x̂
tk−1
tk ( bz2tk−1tk −cx2tk−1tk − by2tk−1tk )

r̂
4tk−1
tk ρ̂

tk−1
tk

+P tk−1
ytkytk

ẑ
tk−1
tk

cx2tk−1tk
( by2tk−1tk

−cx2tk−1tk
− bz2tk−1tk

) + 2ẑ
tk−1
tk ŷ4

tk−1
tk

r̂
4tk−1
tk ρ̂

3/2tk−1
tk

+2P tk−1
ytkztk

ŷ
tk−1
tk ( bz2tk−1tk

−cx2tk−1tk
− by2tk−1tk

)

r̂
4tk−1
tk ρ̂

tk−1
tk

− P tk−1
ztkztk

2ẑ
tk−1
tk

ρ̂
tk−1
tk

r̂
4tk−1
tk

!

a5 =
−ẑtk−1tk x̂

tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

Ã
P tk−1
xtkxtk

−ẑtk−1tk x̂
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
xtkytk

−ẑtk−1tk ŷ
tk−1
tk

r̂
2tk−1
tk ρ̂

tk−1
tk

+ P tk−1
xtkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!

+
−ẑtk−1tk ŷ

tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

Ã
P tk−1
xtkytk

−ẑtk−1tk x̂
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P tk−1
ytkytk

−ẑtk−1tk ŷ
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P tk−1
ytkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!

+
ρ̂
tk−1
tk

r̂
2tk−1
tk

Ã
P tk−1
xtkztk

−ẑtk−1tk x̂
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P tk−1
ytkztk

−ẑtk−1tk ŷ
tk−1
tk

r̂
2tk−1
tk

ρ̂
tk−1
tk

+ P tk−1
ztkztk

ρ̂
tk−1
tk

r̂
2tk−1
tk

!
+

σ2E −
1

4

Ã
P tk−1
xtkxtk

ẑ
tk−1
tk

by2tk−1tk
(cx2tk−1tk

− by2tk−1tk
− bz2tk−1tk

) + 2ẑ
tk−1
tk

cx4tk−1tk

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk
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+2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk ẑ

tk−1
tk (3cx2tk−1tk + 3 by2tk−1tk + bz2tk−1tk )

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk

(69)

+2P tk−1
xtkztk

x̂
tk−1
tk ( bz2tk−1tk −cx2tk−1tk − by2tk−1tk )

r̂
4tk−1
tk

ρ̂
tk−1
tk

+P tk−1
ytkytk

ẑ
tk−1
tk

cx2tk−1tk ( by2tk−1tk −cx2tk−1tk − bz2tk−1tk ) + 2ẑ
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tk−1
tk

cx4tk−1tk

r̂
4tk−1
tk

ρ̂
3/2tk−1
tk

+2P tk−1
xtkytk

x̂
tk−1
tk ŷ

tk−1
tk ẑ
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−ŷtk−1tk ẑ
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4 Simulation results

The standard discretization method for simulating an ordinary differen-
tial equation, by means of a difference equation is employed to simulate
the mean and covariance evolution equations. The simplest way to simu-
late a differential or stochastic differential equation is to replace differen-
tials by finite differences. Thus, to simulate stochastic differential equation
dξt = f(ξt)dt+G(t)dBt we would replace dξt by (ξtk+1−ξtk), dt by (tk+1−tk)
and dBt by

√
tk+1 − tkWtk+1 , where Wtk+1 is a standard normal variable.

The numerical simulation of the estimation algorithm is based upon the
discrete version of the stochastic dynamics and observation equation. The
observations are generated using the equation ζ(tk) = h(ζtk) + ν(tk). The
measurement nonlinearity h(ζ(tk)) is generated from the stochastic dynam-
ics and subsequently appropriate noise sequences were added to generate
the measurements. Two different trajectories taken from [29] were simu-
lated to examine the effectiveness of the second order continuous-discrete
filter. Three sets of observations were used for each trajectory.

26



4.1 Trajectory I

The exact initial conditions for this trajectory are: xt0 = 1.06 DU, yt0 = 0,
zt0 = 0, vxt0 = 0, vyt0 = −1.033 DU/TU, vzt0 = 0. Strength of the stochastic
acceleration σx = σy = σz = 0.0012733DU/TU3/2, and tk − tk−1 = 30
seconds. Here tk and tk−1 are observation instants.

4.2 Trajectory II

The initial conditions for this trajectory are xt0 = 1.06 DU, yt0 = 0, zt0 =
0, vxt0 = 0, vyt0 = 0.933 DU/TU, vzt0 = 0. Strength of the stochastic
acceleration σx = σy = σz = 0.0012733DU/TU3/2.

The initial covariance matrix being chosen as identically zero, which
corresponds to the physical situation that initially the target is located at
a definite point in the space and imparted a definite velocity. The initial
conditions considered here are in ’canonical units’ ([28] pp.40-41). In as-
trodynamics, A canonical unit is a unit of measurement defined in terms
of an object’s reference orbit. Canonical units are useful when the precise
distances and masses of objects in space are not available. However, by
setting the mass of a given object to be 1 mass unit and the mean distance
of the reference object to another object in question, many calculations can
be simplified. The distance unit DU is defined to be the mean radius of the
reference orbit. The time unit TU is defined by the gravitational parameter
µ = GM . For canonical units, the gravitational parameter is defined as:
µ = 1 DU3

TU2
.

4.3 Measurement system

The measurement system consists of a phased array radar that measures
the range and the direction cosines of the target. The rms noise in the
measurements are taken as 10DU in range and 0.05DUrad in the direction
cosines.

The numerical simulation of the nonlinear filters is intended not to make
statistically correct evolutions, but to examine some of the qualitative char-
acteristics of the filters in several computer runs [11]. Since, SNR is a popular
performance measure of the Wiener filter, it can be regarded as ‘effective
performance measure’ for the trajectory estimation problem [29]. If θ(t) is
a parameter/physical quantity varies in a random or nonrandom function
fashion over an interval of time [0 T ], via an estimation, we obtain the esti-
mate θ̂(t) over the same duration, then the instantaneous error is θ(t)− θ̂(t)
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Table 1: SNR for Trajectory I & II
Observation noise variance SNR for Trajectory I SNR for Trajectory II

σr = 10, σangle = 0.05 9.5371 9.2161
σr = 11, σangle = 0.08 9.5371 9.2315
σr = 14, σangle = 0.10 9.5163 9.2857
σr = 15, σangle = 0.50 9.4898 9.2317

and SNR can be defined as the ratio of the mean square time cum ensemble
averaged parameter over mean square cum ensemble averaged error process
over the same interval.

SNR =

R T
0 Ekθ(t)k2dtR T

o Ekθ(t)− θ̂(t)k2dt
we have applied this performance measure to the trajectory estimation prob-
lem. If SNR is somewhat closer to the order of ten, it reveals that the filter
performance is fairly good and smaller than one, the filter is unable to elim-
inate the noise and poor. The proof of SNR(T) is given in [29]. Here, we
simply state the empirical relation of the SNR(T) . The empirical SNR is
defined as

SNR(T ) =

Pn
k=0 kξtkk2Pn

k=0 kξtk − ξ̂
tk
tk
k2

(83)

4.4 Filtering results

Figures 3 and 4 summarize the results of first-order and second-order filters
for trajectory I and Figures 5 and 6 - for trajectory II. Numerical simula-
tions demonstrated in the figures, are aimed to illustrate the effect of the
stochastic acceleration on the orbiting satellite via simulating conditional
mean and variance evolutions of the problem considered here, i.e. equations
(20)-(46), (77) and (82). Because of the second-order approximation of the
system nonlinearity, ‘Between the observations’ the term GQGT in the mean
and variance evolution accounts for the stochastic perturbation felt by the
orbiting satellite. The mean trajectory for the dust perturbed satellite using
first-order approximation does not include variance term in mean evolution.
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Figure 3: Trajectory I mean values: a) mean in x-direction; b) mean in
y-direction; c) mean in z-direction.
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Figure 4: Trajectory I mean values of velocity: a) mean of velocity in
x-direction; b) mean of velocity in y-direction; c) mean of velocity in z-
direction.
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Figure 5: Trajectory II mean values: a) mean in x-direction; b) mean in
y-direction; c) mean in z-direction.
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Figure 6: Trajectory II mean values of velocity: a) mean of velocity in
x-direction; b) mean of velocity in y-direction; c) mean of velocity in z-
direction.
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The maximum distance of the x-component of the position of a particle
moving along an ellipse is the major axis and the minimum is zero. Like-
wise, the maximum distance of y-component of the position is minor axis
and the minimum is zero. The Figs 3ab and 5ab for both the trajectories
show clearly and justify the fact that orbit estimate is close to being ellip-
tical. When the particle is at the end of the major axis, then x-component
of velocity is minimum and y-component is maximum. When the satellite
moves from the end of the major axis to the end of the minor axis, the
x-component of the velocity increases and y-component decreases in magni-
tude, see Figs 4ab and 6ab. When the satellite finally arrives at the minor
axis, x-component of the velocity become maximum and y-component of
the velocity becomes minimum. The motion of the satellite in z-direction,
i.e. the components ẑtktk , and v̂tkztk

is attributed to the only driving force
caused by the stochastic acceleration and the contribution for the evolution
does not come from the initial conditions, since the initial conditions are
assumed zero. This illustrate the ability of the second-order nonlinear filter
to preserve the perturbation effect acting on the orbiting satellite. Table 1
also indicates that the nonlinear filter of this paper is useful, since it results
the SNR larger compared to unity.

5 Conclusion

In this paper, we have developed a second-order nonlinear continuous-discrete
filter for the satellite tracking. The main contribution of this paper is to ex-
amine the accuracy of the nonlinear filter by considering the ‘stochastic
differential equation formalism’ for the satellite dynamics. Such a dynamics
provides an accurate description of reality. The effectiveness of the second-
order nonlinear filter is examined on the basis of it’s ability to preserve
perturbation effect felt by the satellite and to produce larger SNR com-
pared to unity and provides quite simplified analysis. The mean trajectory
for the dust perturbed satellite using first-order approximation does not
include variance term in mean evolution. The term GQGT in variance evo-
lution accounts for the stochastic perturbation felt by the orbiting satellite.
For this reason, first-order filter does not preserve perturbation effects in
mean evolution. In order to account for the stochastic perturbation in mean
evolution, we use the second-order filter. The second-order approximation
includes the second-order partials of system nonlinearity and variance terms
in the mean trajectory, which leads to better estimation of the trajectory.
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Appendix A

The Kolmogorov forward equation describes the time evolution of the con-
ditional probability density and subsequently used for obtaining the condi-
tional mean and conditional variance. The Kolmogorov forward equation is
given by [1]p. 164

dp(ξt|ζtk−1) = (p(ξt|ζtk−1))dt tk−1 ≤ t < tk

where

(p(ξt|ζtk−1)) = −
nX
i=1

∂(pfi)

∂ξi
+
1

2

nX
i,j=1

∂2(p(GQGT )ij)

∂ξi∂ξj

is the diffusion operator.
Let ϕ(ξ) be a twice continuously differentiable scalar function of the

n-vector ξ. Defining the expectation of ϕ using the conditional density
p(ξt|ζtau), t > τ

ϕ̂τ (ξt) = Eτ [ϕ(ξt)] = [[ϕ(ξt)|ζτ ] =
Z

ϕ(ξ)p(ξt|ζτ )dξ

taking the differential on both sides, we get

dϕ̂τ (ξt) =

Z
ϕ(ξ)dp(ξt|ζτ )dξ

dϕ̂τ (ξt) =
¡ Z

ϕ(ξ)(p(ξt|ζτ ))dξ
¢
dt

alternatively, the above equation can be stated as

dϕ̂τ (ξt) =
¡
ϕ(p(ξt|ζτ ))

¢bdt
Since the Kolmogorov forward operator is adjoint operator, thus we have

dϕ̂τ (ξt) =
¡∗ϕp(ξt|ζτ )¢bdt

where ∗ is the Kolmogorov backward operator. after simplification, above
expression becomes

dϕ̂t(ξt) = E[ϕTξ f ]dt+
1

2
trEt[GQGTϕξξ]dt tk−1 ≤ t < tk

where ϕξ is the gradient and ϕξξ is the matrix of second partials. By setting
ϕ(ξ) = ξi and ϕ(ξ) = ξiξj , we can determine the evolution of the mean and
variance respectively. Thus, we have

dξ̂
t
t/dt = f̂ t(ξt, t)
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dP t
t /dt =
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Et(ξtfT )−ξ̂

t
tf̂

tT
¢
+
¡
Et(fξTt )−f̂ tξ̂

tT

t

¢
+Et(GQGT ) tk−1 ≤ t < tk

The above two equations are not ordinary differential equations. The right
hand side of the above equations involve expectations that require the whole
conditional density for their evaluation. Thus, the first two moments of
the conditional density depend on all the other moments. Apparently, in
order to obtain a computationally realizable and practical filter in the gen-
eral nonlinear case, some approximation must be made. After introducing
second-order approximation, we have

dξ̂t = [f(ξ̂t, t) +
1

2
(Pt∂

2f)]dt

dPt = [FPt + PtF
T + \GQGT ]dt

where

(P∂2f)i =
nX

j,k=1

Pjk
∂2fi(ξ̂, t)

∂ξj∂ξk

F =

"
∂fi(ξ̂, t)

∂ξj

#
(n× n)

In component form, the mean and variance evolution equations are

dξ̂ti = fi(ξ̂t, t)dt+
1

2

nX
j,k=1

Pjk
∂2fi(ξ̂, t)

∂ξj∂ξk
dt

(dPt)ij =
³ nX
k=1

Pik
∂fj(ξ̂, t)

∂ξk
+

nX
k=1

Pjk
∂fi(ξ̂, t)

∂ξk
+ (\GQGT )ij

´
dt
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