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Abstract

This paper introduces a new smoothing algorithm for time series
processing to be implemented in various applications, including, among
others, array processing and wireless communication. This new ap-
proach has also been tested for noise filtering and edge preserving in
images.
The algorithm is based on a nonlinear exponential smoothing

(NLES) method that shows a significant improvement in the mean
squared error and in the step function response, in comparison to other
exponential smoothing methods. The interference-elimination results
of the proposed algorithm for an input signal containing a noisy im-
age were equivalent to those of moving average filter [1] and Wiener
adaptive filter [2]; however, due to its simplicity, efficiency and reduced
memory resources needed, the algorithm becomes extremely attractive.
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1 Introduction

A general problem related to filtration and prediction of signal and time se-
ries, modeled as a random process, consists of a deterministic process added
to a random signal (or sequence) with independent samples. If the statis-
tical properties of the process are perfectly known, the optimal processing
algorithm always can be constructed. However, optimal algorithms impose
very often too rigid hardware and memory constrains, which forces us to
reformulate an optimality into a conditional optimality. Another aspects,
including only partial knowledge of the required statistical characteristics,
as well as the high uncertainty for the probabilistic model to fit the problem
we deal, lead us to use sub-optimal methods which do not guarantee opti-
mality but show good results for a wide variety of situations. One of the
frequently used methods is the exponential smoothing (ES) approach.

The ES, as a method for filtration and prediction of time series, was
proposed in the late 50s and the early 60s [3,4]. Due to its simplicity, it was
used intensively for more then 20 years [5,6]. The progress in the field of
digital signal processing together with simplicity and effectiveness of the ES
stimulated its further using in several applications yielding better results in
comparison to other sophisticated methods up to the present time [7,8].

2 Nonlinear exponential smoothing (NLES)

The procedure of ES is defined by the following recursive relation:

Sn = αxn + (1− α)Sn−1; 0 ≤ α ≤ 1, (1)

where {xn} is the sequence data (samples) to be processed, Sn is the processed
result for the n-th step, and α is the smoothing coefficient.

Repeated use of Eq. (1) leads to the equation

Sn = α
nX
i=1

βn−ixi + βnS0, β = 1− α (2)

where the processing result is a weighted sum of all samples with exponen-
tially decreasing weights. This procedure is suitable for time series with
slowly varying trends. It has only one parameter α that must meet the
two contradictory requirements: on the one hand, it must be small enough
α = (0.2 ÷ 0.3) for smoothing of the interference component of the model,
and on the other hand, it should be large enough to track possible fast
variations in the input signal α = (0.7÷ 0.9).
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To resolve the contradiction, we define ∆n = xn − Sn−1, and by substi-
tuting in Eq. (1) we get

Sn = α∆n + Sn−1. (3)

For prediction scenario, the value ∆n is interpreted as the prediction
error at the n-th step, and Sn is the correction of the value Sn−1 by using
the revealed error ∆n.

In order to fulfill simultaneously the two above contradictory conditions
for α, we will define α to be α = α(|∆|), where the new α is a non-decreasing
function of |∆n|. Thus substituting α in Eq. (3) with α(|∆|) leads to

Sn = α(|∆n|)∆n + Sn−1. (4)

Eq. (4) describes the NLES method.

Figure 1: An example of the behavior of α as a function of |∆n|.

Eq. (4) is a generalization of the classical ES procedure of Eq. (3).
Fig. 1 demonstrates an example of function α(|∆|). As long as |∆| is small,
α(|∆|) reaches its lower limit, while as |∆| increases, α(|∆|) also increases
up to its upper limit. The motivation for partitioning ∆n into 3 regions can
be explained by the fact that values of ∆n below ∆0 are caused by noise
and thus smoothing is needed, therefore we choose ∆0=0.2 and α0=0.2.
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Values above∆1 are generally contributed by the signal and thus∆1=0.8
and α1=0.8, which dramatically decreases the smoothing affect. For the
values between 0.2 and 0.8 the smoothing should be adaptive.

3 Experimental results

To demonstrate the performance of the proposed NLES algorithm, we con-
ducted several tests and compared the results with several well-known simple
algorithms.

In the first test we investigated the response of the NLES algorithm to
unit step function compared to classical ES and adaptive ES (AES) [9].

The AES is described by the following equations:

S−n = (αn −∆α) ·∆n + Sn−1
Sn = αn ·∆n + Sn−1
S+n = (αn +∆α) ·∆n + Sn−1

(5)

where Sn is the basic result of the processes, while the values S−n and S+n
are used to calculate ∆n according to Eq. (3)

∆+n+1 = xn+1 − S+n
∆n+1 = xn+1 − Sn
∆−n+1 = xn+1 − S−n

(6)

and αn is given by complex computations

αn+1 =


αn +∆α , if |∆+n | = min
αn , if |∆n| = min
αn −∆α , if |∆−n | = min

(7)

In this case, αn is changed adaptively according to the changes in input
signal and provides better tracking results for fast transients in the input
signal; however, at the same time it requires more complex computation.

In this test, a unit step function corrupted with additive independent
uniformly distributed random noise within the range [-0.5, 0.5] was chosen
as the input series. This function emphasizes the contradictory requirements
for the coefficient α, which has to be simultaneously small to filter the noise
and large to track the input signal. Fig. 2 shows the results of comparison
between the ESs and the proposed NLES. Fig. 2 (a) represents the cor-
rupted input step function with a uniformly distributed random noise, (b)
represents the NLES results for α(|∆|), as shown in Fig. 1, where α0=0.3,
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∆0=0.3, α1=0.8, and ∆1=0.8. Curve (c) introduces the AES algorithm re-
sults, where ∆α was selected to be 0.01. The classical SES result introduced
by Eq. (1) is denoted by curve (d).

Figure 2: Comparative results for a unit step function corrupted by additive
noise. (b), (c) and (d) are the results of NLES,AES and SES, respectively.

In the second trial, we implemented the NLES algorithm to image process-
ing, for image smoothing and noise reduction purposes. The filtered im-
ages were spanned row-by-row into a one-dimensional series vector and then
NLES was implemented to smooth the corrupted image. In the next step,
the smoothed picture was rearranged, column-by-column, into a second one-
dimensional sequence, and the NLES algorithm was implemented again for
better results.
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In this procedure we used two NLES iterations:

S
(1)
n = α(1)(|∆n|)∆+nS(1)n−1

S
(2)
n = α(2)(|∆n|)∆+nS(2)n−1

(8)

where the first equation smoothes the original image row-by-row, and the
second equation smoothes the results of the first iteration column-by-column.
α(1)(|∆n|) and α(2)(|∆n|) are the coefficient α function according to Fig. 1.

Figure 3: Comparison of MSE results, with (a)-(f) being the results for SES,
AES, NLES, Moving Average, Wiener and Median, respectively.

We corrupted the original image in Fig. 4a with variable Gaussian noise
variance to demonstrate the smoothing performances. The MSE criterion
of Eq. (9) was chosen to test the NLES performance in comparison to SES,
AES, Moving Average, Wiener and Median algorithms.

7



Figure 4: Subjective visual comparison (a) Original image. (b) Image cor-
rupted with a Gaussian noise (0.04 variance). (c) SES with α =0.2. (d)
AES with ∆α=0.01. (e) NLES with α0=0.3, ∆0=0.3, α1=0.8, and ∆1=0.8.
(f) Moving Average filter. (g) Wiener filter. (h) Median filter.
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In the MSE term

MSE =
1

M ×N

MX
i=1

NX
i=j

(y(i, j)− s(i, j))2 (9)

The predicted filtered output y(i, j) and the original image input s(i, j)
were denoted as two-dimensional matrices of MxN pixels, and Fig. 3 intro-
duces the MSE comparison results.

Fig. 4 introduces a subjective visual comparison. Fig. 4a is the origi-
nal image and Fig. 4b is the same original image corrupted by a random
Gaussian noise with a 0.04 variance. Fig. 4c-4h represent the output results
of SES, AES, NLES, Moving Average, Wiener and Median, respectively. In
the SES algorithm a clear blurred distortion appears, due to the poor edge
response, while in AES the edge line contained outliers, which cause image
deformation. The NLES in Fig. 4e shows a sharp line and low noise image
results.

4 Conclusion

We demonstrated the superiority of the NLES algorithm over the SES and
AES algorithms. The processed image resulting from the NLES algorithm
was equivalent in comparison to the Wiener and Moving average filters
(MSE and visual), however, we improved the computational efficiency in
the meaning of MAC (Multiply and Accumulator) operations, reducing it
approximately by a factor of 6 compared to the moving average, and ap-
proximately by a factor of 13 compared to the Wiener algorithm. Above all,
the reduction of required memory capacity together with simplicity of NLES
turn this method to be alternative for vast signal processing applications.
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