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Abstract

We consider possibilities to adjust the canonical procedure for gen-
eration of a bandpass process with predetermined statistical properties
of its envelope. The relationships are obtained, necessary for calcula-
tions of scheme elements for a corresponding device and examples are
quoted herein.
PACS: 84.30.-r

1 Introduction

In many experimental problems of radio engineering and radiophysics there
arises a necessity to form random processes with predetermined statistical
properties. As an example we can mention tests of real equipment with
the help of communications channels imitators [1, 2], different simulation
problems [3] and others.

In principle, any random process is perfectly characterised by its mul-
tivariate distribution. However, when applied to the generation problem,
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these requirements may be found too extensive and difficult for realization
due to the following reasons:

- as a rule, volume of available information, on which the requirements
imposed on the generated process are based, is limited and in many cases
it is just not known by which multivariate distribution the given process
should be characterised;

- even as analytical and/or algorithmic solution of the problem are
known, technical realisation can meet extensive, frequently insurmountable
difficulties.

In these conditions, it is natural to try to solve the formation problem in
such a way as to provide at least partial compliance of the formed process
to the required statistical structure. As a rule, this is implemented through
determination of univariate characteristics (certain number of moments or
univariate distribution) and correlation function. Problems of formation of a
random process with predetermined univariate density and correlation func-
tion have been researched during a long period of time, and a lot of works
were dedicated to this subject [4 - 6]. However, the overwhelming major-
ity of these works is related to the baseband processes, i.e. those having
continuous power density spectrum spread in the area, of low frequencies
down to zero. Together with this, in radio engineering practice there are
widely used bandpass processes commonly used as models of signals passed
through the communication channel, bandpass interference [7 - 9], etc. Such
processes emerge in research and modeling phenomena in non- linear me-
chanics [10, 11], biomedical instrumentation [12], as well as in other areas,
and therefore the formation of such processes represents rather general in-
terest.

The widely accepted formation procedure applied to baseband processes,
is fully quoted and analysed, for example, in [6]. The whole idea of the
method is to generate some initial, as a rule, normal process, which is than
undergoing a non-linear zero-memory transformation. Non-linearity endows
univariate distributions with a required form. As concerns the correlation
function (spectrum density), preliminary linear filtration provides the spec-
trum of initial normal process with such properties that the correlation func-
tion of output random signal after a non-linear transformation would acquire
the desired form.

Thus, the clearly defined procedure for the formation is aligned: gener-
ation of an initial random process, forming filtration, and non-linear trans-
formation. However, with particular reference to generation of bandpass
processes this procedure is directly inapplicable. It must be followed by an-
other filtration since it is not successful to get the characteristics of the first
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filter such that the process would retain its bandpass after the non-linear
transformation. However, an obstacle arises caused by well-known effect of
normalisation when random signals are passing though bandpass linear cir-
cuits and, as a result, the process loses with necessity the required form of its
univariate density. Unfortunately, up to the date it has not been successful
to surmount the contradiction between the necessity to retain the required
band and density in spite of numerous attempts to do it. As a result, many
specialists came up to the idea of impossibility to resolve the contradiction
and solve the problem with the traditional method. Since the demands for
working out the problem nevertheless exists, an attempt was undertaken
to attack the problem from another position, namely with methods of non-
linear mechanics applying closed non-linear oscillatory circuits [13, 14]. In
that case the generative circuit is described by a differential equation with
nonlinearity, and the realizations of the process are Markov-type ones. In
the present work we show that it is possible to retain the general line for solv-
ing the problem of generation of bandpass random signals. Such approach
promises inplementational advantages, since one can use already existing
techniques. We give the ways for determination of characteristics for each
unit of the corresponding scheme. It should be noted, that as applied to sta-
tionary processes, in majority of cases not the instantaneous values are of
interest, but rather the envelope [9]. Therefore, we are considering most ac-
tual variant of the problem, in which the univariate function and correlation
function of the envelope are determined in advance.

2 Formulation of the problem

Structural scheme of signal formation is depicted in Fig. 1. The scheme
contains three units. First filter 1 forms a bandpass process η (t) from the
arriving white Gaussian noise ξ(t). Realisations of η(t) at the output of the
filter 1 can be described according to [7] as follows:

η((t) = E(t) cos[ω0t+ θ(t)],

where ω0 is the centre frequency of the band filter 1, and processes E(t)
and θ(t) are varying slowly, statistically independent in corresponding time
moments and distributed,respectively, in accordance with the Rayleigh and
uniform distributions. After a non-linear transformation ϑ = u(η), output
process ϑ(t) can be described as [7]:

ϑ(t) =
∞X
n=0

Rn(E(t)) cos[n(ω0t+ θ(t))], (1)
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Figure 1: Block-diagram of the narrow-band random process formation.

where {Rn(·)} is a set of functions describing the dependency of the envelope
of each of the quasiharmonics in (1) on the envelope E(t) of process η(t).
The most suitable for our goals form of Rn(·) will be given below. The other
filter 2 separates from the sequence (1) only one component (to be specific
we would assume below that this is the 1st term of the sequence , i.e. n = 1).
If η(t) is sufficiently bandpass, process ϑ(t) yields a possibility, that the cor-
responding quasiharmonic can be selected from it without distortions, and
at the same time to exclude influence of other quasiharmonics. Therefore,
it is possible not to claim any special requirements regarding the form of
frequency characteristics of the filter 2. The sufficient requirement is that it
be uniform in the vicinity of ω0 and vanish in the vicinity of other quasihar-
monics. Thus, our objective is to determine the form of non-linearity u(·)
and amplitude-frequency characteristics G(ω) of the filter 1, generating the
bandpass Gaussian process η(t), which after non-linear transformation and
selection by the filter 2, would be transformed into the process µ (t) with
required properties of its envelope. Distinction of the present approach from
the widely accepted one is in the fact that both the filter 1 and the non-
linearity should endow with the predetermined properties not to the process
ϑ(t) itself at the nonlinearity output, but rather to the envelope R1(E(t))
of its first quasiharmonic µ (t) selected thereafter by the filter 2.

3 Deduction of computational dependencies

As it has been noted before, we are considering the case, when the density
function is determined not for the process itself, but for its envelope. It
should be noted, however that for a stationary bandpass process the fol-
lowing relationship is valid, connecting the density function fR(R) of the
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envelope and the density fµ (µ) of instantaneous values [15]:

fµ (µ) =
1

π

∞Z
|µ|

fR(R)p
R2 − µ2

dR =
1

π

∞Z
0

fR (|µ|chx) dx (2)

Therefore even under our assumption that only fR(R) is determined, it
is always possible to determine the form of fµ(µ), if a necessity arises.

3.1 Determination of the form of the non-linearity

First we shall determine an expression for Rn ( ·) in (1). Using the notion
ϕ = ω0τ + θ(τ) and assuming ϑ = u(η), we can re-write (1) in the form

u(Ecosϕ) =
∞X
n=0

Rn(E)cosnϕ. (3)

Let us multiply both parts of the expression obtained above with cos kϕ
(k = 0, 1, . . .) and integrate by ϕ from 0 to 2π. Then

R0(E) =
1

π

πZ
0

u(E cosϕ)dϕ,

Rk(E) =
2

π

πZ
0

u(E cosϕ) cos(kϕ) dϕ, (k = 1, 2, ... ). (4)

Since we conditioned before that filter 2 selects from (1) the first quasi-
harmonic, we take from (4) the integral with k = l. Then, after substitution
y = E cosϕ and some elementary transformations, the following integral
equation is obtained for so far unknown function u(y):

R(E) =
2

πE

EZ
−E

y
u(y)p
E2 − y2

dy. (5)

From simple physical reasons it follows that function u (y) should be odd,
since both half -waves of the process (1) should be transformed in identical
way. Then function yu(y) is even, and (5) can be re-written as :

R(E) =
4

π

EZ
0

y
u(y)p
E2 − y2

dy.

7



Thereafter we shall treat only the upper half of function u(·). Further
on, by substitution t = y2, x = E2, this expression can be transformed to
the Abel integral equation with the known solution [16]:

u(y) =
1

2y

d

dy

yZ
0

E2R(E)p
y2 −E2

dE. (6)

On the other hand, it follows from (1) that function R(E) can be con-
sidered a non-linear non-inertial transformation of the envelope E(t) for the
normal process η(t), distributed, as it is known, in accordance with the
Rayleigh law. Therefore, for values of the transformed functions to have
the predetermined density fR(R) with the distribution function FR(R) =
RR
0

fR(x)dx, the transformation should be described by the function depen-

dency [6]:

R(E) = F
(−1)
R

µ
1− exp

µ
− E2

2σ2

¶¶
, (7)

where F (−1)R (·) is the function inverse to FR(·), σ2 is the variance of η(t).
By substitution (7) into (6), we obtain:

u(y) =
1

2y

d

dy

yZ
0

E2F
(−1)
R

³
1− exp

³
− E2

2σ2

´´
p
y2 −E2

dE. (8)

With the help of simple transformations, the dependence (6) can be
represented in some equivalent form as follows:

u(y) =
1

2y

d

dy

yZ
0

p
y2 − x2R

³p
y2 − x2

´
dx = (9)

1

2y

yZ
0

d

dy

³p
y2 − x2R

³p
y2 − x2

´´
dx = (10)

yZ
0

R
³p

y2 − x2
´

p
y2 − x2

+R
0
ERE

³p
y2 − x2

´ dx, (11)

where R
0
E

³p
y2 − x2

´
is d

dE R(E)|
E=
√
y2−x2 .
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Formula (11) after substitution of (7) yields

u(y) =
yR
0

{
F
(−1)
R 1−exp − y2−x2

2σ2√
y2−x2 +

√
y2−x2 exp − y2−x2

2σ2

σ2fR F
(−1)
R 1−exp − y2−x2

2σ2

}dx.
(12)

The last formula is convenient in the case when it is impossible to obtain
F
(−1)
R ( ·) analytically, because it allows to avoid a numerical differentiation.
The set of formulas (8)-(12) yields solution of the problem for finding non-
linear transformation of instaneous values of the process η(t).

3.2 Determination of frequency characteristics of the first
filter

Since, by our assumption, the input process is a white noise with a uniform
spectral density for all (used) frequencies, it is enough to find the spectrum
of power Pη(ω) for the process η(t) since up to a constant factor,

|Gη(ω)|2 ∼= Pη(ω). (13)

In turn, to determine the form of Pη(ω), it is enough to find envelope
ρη(τ) of the normalised correlation function of η(t). In accordance with the
Wiener-Chinchin theorem [7], functions ρη(τ) and Gη(ω) are related to each
other as follows:

|G(ω)|2 = 4
∞Z
0

ρη(τ) cos(ω0τ) cos(ωτ) dτ, (14)

representing the Fourier cosine-transformation of the correlation function
ρη(τ) cos(ω0τ) of the bandpass process η(t). It follows from (8), that the
non-linear transformation u(η) followed by the filtration, corresponds to the
transformation of its envelope E(t), according to the law determined by the
function (8). Therefore, using the expression for bivariate Rayleigh density
we can write down the expression relating correlation function BR(τ) of the
envelope of the output process η(t) to the function ρη(τ) :

BR(τ) =M(RRτ )−M2(R), (15)

M(R) =

∞Z
0

R(E)E

σ2
exp

µ
− E2

2σ2

¶
dE, (16)
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M(RRτ ) =

∞Z
0

∞Z
0

E1E2R(E1)R(E2)

σ4(1− ρ2η(τ))
exp

½
− E21 +E22
2σ2(1− ρ2η(τ))

¾
×

I0

µ
ρη(τ)E1E2

σ2(1− ρ2η(τ))

¶
dE1dE2. (17)

Substitution of (17) and (16) into (15) yields the integral equation, con-
catenating to given function BR (τ) with the sought function ρη(τ). Evalu-
ating the integral, we can find ρη(τ).

3.3 Order of evaluation

Thus, the order of determination of the filter 1 characteristics and the non-
linearity is as follows:

(a) according to the predetermined density function fR(R) of the enve-
lope (distribution function FR(R)) and with the help of expressions (8), the
form of non-linearity u(·) is determined;

(b) with the help of expressions (15)-(17), the relationship between the
predetermined correlation function BR(τ) and the required function ρη(τ)
is established analitically or numerically;

(c) with the help of expression (14), the form of frequency characteristics
G(ω) of the filter 1 is determined.

4 Example

Since we are interested only in the forms of the appropriate functional de-
pendencies, we assume for simplicity σ = 1.

Let us generate bandpass stationary random process with the exponen-
tial envelope density fR(R) = αe−αR and correlation function BR(τ) =

exp
³
− τ2

2τ20

´
.

4.1 Evaluations

(a). The distribution function for this case is FR (R) = 1− exp (−αR) with
the inverse function F

(−1)
R (z) = 1

α ln(1− z). According to (8), we obtain

R(E) = F
(−1)
R

µ
1− e−

E2

α

¶
=

E2

2α
. (18)
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Figure 2: Realization of a random process after each consequent transfor-
mation (a, b and c respectively).
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With the use of (10), we obtain the expression for the non-linearity:

u(y) =
1

2y

yZ
0

d

dy

(y2 − x2)
3
2

2α
dx =sign(y)

3πy2

2
. (19)

(b). According to (15) - (17), with the use of elementary methods of
integration, we obtain :

M(R) = 1
α , M(RRτ ) =

1+ρ2η(τ)

α2
, BR(τ) =

ρ2η(τ)

α2
, such as ρ2η (τ) =

α2 exp
³
− τ2

2τ20

´
.

(c). From (14) we deduce [17]:

|G(ω)|2 =
√
2πτ0 exp{−(ω − ω0)

2τ20}. (20)

Thus, to generate the demanded process, a white normal noise must
be filtered by a filter with the frequency characteristics (17) and subjected
to odd-parabolic transformation, followed by filtration to separate the first
quasiharmonic.

4.2 Simulation

According to the structural scheme (Fig. 1) and with the use of the expres-
sions (11), (12) for non-linearity u(y) and amplitude-frequency characteris-
tics G(ω) of the forming band filter 1, a simulation model for the example
was built. Realizations of the processes after each transformation are shown
in Fig. 2 (a,b,c). Agreement of the envelope distribution function with the
required function was estimated using the χ2 criterion. The result of eval-
uation on 50 independent samples of the envelope confirmed that with the
confidence not less 0.98, the results of simulation do no contradict to the
hypothesis that the envelope is distributed according exponential low.

5 Conclusion

The canonical procedure for generation of random process with prescribed
statistical properties is extended to the case of a bandpass process. The
peculiarity of the procedure is in the fact that properties of the envelope,
rather then instantaneous values, are given. The methods of evaluation of
characteristics for the generator are brought. An example with exponential
distribution of envelope is given. The findings seem to be useful for several
implementations, and especially for the design of testing generators and
simulators.
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