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Abstract

We discuss an alternative version of non- relativistic Newtonian me-
chanics in terms of a real Hilbert space mathematical framework. It is
demonstrated that the physics of this scheme correspondent with the
standard formulation. Heisenberg-Schrödinger non-relativistic quan-
tum mechanics is considered adequate and complete. Since the sug-
gested theory is dispersion free, linear superposition principle is not
violated but cannot affect results of measurements due to spectral de-
composition theorem for self-adjoint operators (the collapse of wave
function).

PACS: 03.65.Ta; 03.65.Db

1 Introduction

The purpose of this investigation is to establish for classical mechanics the
structural framework similar to the one used in quantum theory. We restrict
ourselves to description of single particle states and prefer here to avoid
complications introduced by special relativity. In order to make clear the
mathematical and correspondent physical content of successive discussion, I
will quote the following statement [1]:
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If Â+ = Â and < Ψ|Ψ1 >= 0, we can always decompose

Â|Ψ >= α|Ψ > +β|Ψ1 >

with β real and non-negative.

α =< Â >≡ Ā

β =
h
< Â2 > −(< Â >)2

i1/2 ≡ ∆A.
This theorem appears several times [2] in different contexts, but in form

presented, its content takes a clear view of the situation: it is enough that
wave function of the system will contain two linearly independent (orthogo-
nal) components in order that the correspondent observable will have non-
zero dispersion. The non-zero dispersion leads to practically instant spread
of wave packet.

Now, let us consider famous E. Schrödinger cat example [3]. The es-
sential points are: 1) The cat may be presented as a quantum mechanical
system and not as a classical measurement instrument; 2) The system state
is described by the following linear superposition of pure states:

|Ψcat >=
1√
2
(|Ψalive > +|Ψdead >).

E. Schrödinger did not continue discussion after that point. But since
a cat is in the superposition state, this will lead to the spread of wave
packet within time uncertainty predicted by W. Heisenberg. The curious
experimenter will find cat “blurred” over entire volume of the chamber and
disappeared (from classical point of view) together with his smile (notice
that if it was correct, then the quantum mechanics would provide proper
unification between L. Carroll and E. Schrödinger fantasies). It is remarkable
that E. Schrödinger concluded discussion of cat paradox by the following
statement:

“It is typical of these cases that an indeterminacy originally restricted to
the atomic domain becomes transformed into macroscopic indeterminacy,
which can then be resolved by direct observation”.

That statement is in contradiction with the J. von Neumann conjecture
[2] that the macroscopic physics are dispersion free.
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2 Real Hilbert space formulation of classical me-
chanics

First of all I should define what I mean by real Hilbert space. We should
maintain the connection with quantum theory as close as possible and assure
the proper extension to relativistic version.

In addition, a scheme should incorporate classical electrodynamics through
application of principle of local gauge invariance. Therefore we will use the
following definitions:

Real Hilbert space Complex Hilbert space
System state: complex wave func-
tion

System state: complex wave func-
tion

Dynamical variable: complex linear
operator

Dynamical variable: complex linear
operator

Observable: self-adjoint (hermitian)
operator

Observable: self-adjoint (hermitian)
operator

Measurement of observable value (∗): Value of observable:
< ψ|Âclas|ψ >= tr

R
ψ̄Âψd3x < ψ|Âquant|ψ >=

R
ψ̄Âψd3x

(∗) Scalar product in this framework is defined by:

< f |g >R= tr

Z
f̄gd3x,

with underlined numerical basis of dimension two (complex numbers). This
implies that

x2 − tr(x)x+N(x)1 = 0 ∀x = complex, tr(x) = real, N(x) = real

x+ x̄ ≡ tr(x)1, xx̄(= x̄x) ≡ N(x)1.

In particular,

tr(i) = tr

µ
0 −1
1 0

¶
= 0.

Notice that in quantum theory the relevant scalar products associated
with observable quantities are always real. Since in classical mechanics every
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dynamical variable is observable, we will further discuss only self- adjoint
operators. They satisfy the following algebra:

1) Ĉ ≡ Â+ B̂, Ĉ = Ĉ+ ∀Â, B̂ Â = Â+, B̂ = B̂+.

This statement will be justified after introduction of a product of two
self-adjoint operators.

2) Ĉ ≡ ÂB̂, Ĉ = Ĉ+ ∀Â, B̂ Â = Â+, B̂ = B̂+.

Proof.

ÂB̂ =
ÂB̂ + B̂Â

2
+

ÂB̂ − B̂Â

2
=

ÂB̂ + B̂Â

2
+ iD̂

B̂Â =
ÂB̂ + B̂Â

2
+

B̂Â− ÂB̂

2
=

ÂB̂ + B̂Â

2
− iD̂

Obviously, D̂ = D̂+.
Then

< ÂB̂ >R=<
ÂB̂ + B̂Â

2
>R= tr < ÂB̂ >C

< B̂Â >R=<
ÂB̂ + B̂Â

2
>R= tr < B̂Â >C

Therefore

< (ÂB̂ − B̂Â) >R= 0

ÂB̂ = B̂Â

with respect to real scalar product defined above.
Since the product of any pair of self-adjoint operators is a self-adjoint

operator, the product of an arbitrary number of self-adjoint operators is a
self-adjoint operator.

Now let us examine properties of self-adjoint operators in these schemes.
1. Spectral Decomposition Theorem: For every self-adjoint (hermitian)

operator Â that is suitable for description of the observable dynamical vari-
able (has all necessary properties required by functional analysis), there
exists the complete orthonormal basis in Hilbert space uniquely defined by
the requirement

β =
h
< Â2 > −(< Â >)2

i1/2 ≡ ∆A = 0 (1)

The components of that basis are the solutions of the equation
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Âfk = λkfk (2)

which is a consequence of Eq. (1).fk are called eigenfunctions of the operator
Â. Sets of real numbers λk are called eigenvalues of the operator Â, are
defined simultaneously with fk and form a spectrum of Â. The spectrum of
hermitian operator may contain several discrete numbers, a countable set of
discrete numbers or/and continuous interval (finite or infinite).

The careful reader may verify line by line that there is no difference
between complex and real Hilbert spaces as defined above with respect to
spectral decomposition theorem. There exists vast literature on the topic
but the books of R. Courant and D. Hilbert [4] and J.von Neumann [2] still
remain useful.

Here perhaps I should add the important remark. When we write

Âfk = λkfk,

we usually say that it provides physical value(s) of the observable Â. It does
not. Wave function f is not an observable quantity. Wave function g = Âf
is also an unobservable quantity. The value of an observable should be a
real number. Only the expression

< ψ|Âquant|ψ >=

Z
ψ̄Âψd3x

provides the values of the observable in quantum theory. Therefore, the
additional relation is required in order to associate them with the results of
measurements.

2. The necessary and sufficient condition for two or any number of
hermitian operators to have a common set of eigenfuctions which form a
complete orthonormal basis in Hilbert space is that they are mutually com-
muted. Since the product of two or any number of mutually commuting
hermitian operators is again a hermitian operator (and commutes with each
of it components), it has the same set of eigenfunctions. Indeed, every one
of them in that basis is dispersion free.

Hence, the real Hilbert space as defined above provides realization of
dispersion free physical theory.

Moreover, since the coordinate x̂ has a purely continuous spectrum, every
observable in that theory has a continuous spectrum. An additional feature,
which distinguishes it from the complex Hilbert space framework, is unique-
ness of its basis. The theory remains linear and does not exclude validity of
linear superpositions for the system states; however, only precise values of
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hermitian operators are measured. That phenomenon is known as collapse
of wave function.

3. Another mathematical statement that may have a very interesting
physical realization (we will discuss it later) is valid in real Hilbert space: for
an arbitrary set of mutually commuting hermitian operators Â, B̂, Ĉ, ...there
exists hermitian operator R̂ such that each one of Â, B̂, Ĉ, ... is a function
of R̂ [5].

Now it become manifestly obvious that real Hilbert space provides a
convenient arena for Newtonian mechanics. Finally, let us demonstrate that
the equation

< ϕ|B̂clas|ϕ >=< ψ|B̂quant|ψ > (3)

is equivalent to the Heisenberg quantization condition.
It is well known that the classical equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

have the following form in terms of hermitian operators [6]:

dÂ

dt̂
=

∂Â

∂t̂
+
X
i

(
∂Â

∂q̂i

∂Ĥ

∂p̂i
− ∂Â

∂p̂i

∂Ĥ

∂q̂i
)

if we choose

B̂clas =
X
i

(
∂Â

∂q̂i

∂Ĥ

∂p̂i
− ∂Â

∂p̂i

∂Ĥ

∂q̂i
)

and

B̂quant =
i

~
(ĤÂ− ÂĤ)

then using Eq. (3) we obtain

dÂ

dt
=

∂Â

∂t
+

i

~
(ĤÂ− ÂĤ)

which are the quantum equations of motion written in the Heisenberg rep-
resentation.

The Eq. (3) is the fundamental relation that defines the results of mea-
surements. For the model example of a particle in an infinite spherical well,
only discrete solutions of right hand side imbedded into continuous spectrum
of left hand side will be revealed.
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3 Theory of measurements

In the previous section the formulation of Newtonian dynamics was achieved
and was even demonstrated that the same dynamical law still governs time
evolution of the system in quantum physics. It was discovered by E. Schrödin-
ger [7] that the alternative equivalent form of equations of motion exists in
non-relativistic version of the theory. However, what that which is men-
tioned by the notion “physical law” still remains undefined.

We may say that for the mathematical structure it is sufficient to be
legal and legitimate if its foundation is based on mutually consistent set of
assumptions. It is not sufficient for physics: physics are an empirical science
(in practice this means that the only perfect mathematical frameworks will
survive). The realization of that requirement is performed through intro-
duction of properly defined measurement instruments and procedures. The
structure of Newtonian mechanics represents the basic ingredients needed
to achieve that. In addition to the formulation of the time evolution of the
system (dynamics), the equations of motion should earn status of physical
law. The latter requirement is satisfied by the introduction of the reference
frames and rules as how they are connected with each other. It is mean-
ingless to discuss any law or relation without its universality with respect
to a chosen and well defined infinite set of reference frames. In the classical
mechanics, it turns out that the definition of the suitable reference frame
(inertial systems) occurs through the idealization of the free moving body
isolated from it environment. Then the connection between those frames is
given in terms of the motion of such a body. This is the content of the first
law of the Newtonian mechanics (Galileo law of inertia), which is indeed
consistent with the fundamental equations of motion. We associate that
body, located at the origin of a given reference frame, with an appropriate
set of measurement instruments. Therefore the origin of the reference frame
should be defined with certainty and the measurement instruments should
obey laws of classical physics.

In the scheme suggested here, both requirements are met and Eq. (3)
assures that all relevant information about properties of investigated quan-
tum mechanical system is available. Eq. (3) plays a role analogous to the
third Newton law.

A single isolated sample of the experimental data has no meaning in clas-
sical physics. Only repetitions of the sample will confirm that the obtained
result represents the objective reality. The requirement that the system
state remains unchanged during the experiment was never fulfilled; even the
system invariants (for example in collisions) may change. What is essential
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is that if the consecutive (in time) measurements on the same system are
not legal, the repetition of the measurement should be assured by possibil-
ity to prepare a system identical to the original one. As pointed out by
E. Schrödinger [3] the measurements of quantum mechanical systems allow
unprecedented precision as well as preparation of the identical experiments
(feature inherent to objective property of the quantum systems- the identi-
cal particles are undistinguishable; a situation which is not available within
the classical world).

The collection of the obtained results is now the subject of the stan-
dard techniques for the data processing. In case the system under test is a
classically defined material point (coordinate and momentum are mutually
commuted hermitian operators), one will obtain a picture sharply concen-
trated around a single isolated point. In case when the system obeys the
laws of quantum physics, one will get a picture of a spatially extended ob-
ject; the number of required samples is determined by the classical methods
of image and/or signal processing [8]. I do not see any importance to our
subject that the sequence of samplings emerged in random fashion. There
is no doubt that the obtained result reconstructs the objective reality ex-
actly in the same manner as the image of the classical material point was
obtained.

In the present discussion, we restrict consideration to the non-relativistic
limit of classical and quantum physics. Inclusion of electromagnetic inter-
action (as well as gravitation) leads to a relativistic local field theory. No
measurement instruments or procedures exist that violate foundations of
classical physics. Contradictions currently discussed in literature are appar-
ently only a matter of misinterpretation.

4 Conclusions

It was demonstrated that non-relativistic classical mechanics might be refor-
mulated in terms of real Hilbert space, with an underlined numerical system
of complex numbers. It is worthwhile to mention that similar structures
based on real quaternions and real octonions exist [9]. The presence of rich
phase structure in the definition of wave functions (system states) should
allow the axiomatic introduction of electromagnetic and gravitational inter-
actions by means of application of the principle of local gauge invariance.
The relativistic version of the theory is expected to emerge naturally in
suggested frameworks.

The present paper is devoted mainly to the problems related to the mea-
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surement theory. The beautiful books written by R. Penrose [10] inspired my
investigation. However, the results presented apparently do not support the
ideas developed in it. Perhaps, it is not so. Within a classical world we are
working in Heisenberg representation. Hilbert space appears to be uniquely
defined and rigid and plays a role of passive arena for the events associated
with the dynamics of the physical system. The space-time continuum plays
a similar role in the standard formulation of Newtonian mechanics. It seems
to me reasonable to expect that these arenas are actually identical. H. Weyl
[11] developed a technique suitable for verification of this conjecture and the
J. von Neumann theorem mentioned above (statement 3) may assign to it
the dynamical content.

We have used here one-particle states only and discussed the role of
dispersion defined as the property of the operators acting in Hilbert space
formed by that state. The origin of the terminology lies in the statistical
interpretation of quantum physics. Unfortunately, I was never able to un-
derstand the arguments behind this interpretation. So, may be it is right,
may be it is not adequate. I used it in order not to confuse the reader simi-
larly to as we say: “Tomorrow sun will rise at six thirty”. A more disturbing
feature of statistical interpretation is that it probably rejects the possibility
to gain precise knowledge of the physical systems in quantum world. J.M.
Jauch [12] describes that process as a journey in the infinite library, which
contains all the answers. The journey only starts. Above the entrance door
it is written: “Igitur eme, lege, fruere”.

I am grateful to I.D. Vagner and L. Sepunaru for discussions.
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