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Abstract

The Landau problem is a quantization of the motion of a charged
particle in an external magnetic field on a basis of the standard Schrö-
dinger equation. In this paper the Landau quantization is general-
ized to the case of a two-component wave function which obeys to the
Bogoliubov-de Gennes equations.

PACS: 73.43.-f, 73.40.Gk, 75.47.-m

1 Introduction

This paper is devoted to the memory of my untimely deceased friend Pro-
fessor Israel Vagner. His main scientific achievements have been related to
the field of quantum magnetic oscillations in the low-dimensional conductors
and superconductors. The latter are summarized in a well-known to experts
review article [1].

In superconductors the energy spectrum and the two-component wave
functions of the quasiparticles is governed by the Bogoliubov-de Gennes
equations. Correspondingly, to calculate the energy spectrum and the wave
functions in this case is much more difficult than to solve a standard Lan-
dau problem of the electron in an external magnetic field on a basis of the
Schrödinger equation within the one band approach. In semiconductors the
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band effects are important. The most simple generalization is a two-band
model with the gap due to the periodicity of the lattice or superlattice poten-
tial. In superconductors the gap is due to the correlations between electrons
which brings an additional complication related to the self-consistency of
the gap function ∆(r) which is very difficult to calculate because of the
vortex-lattice formation in external magnetic field. The vortices make the
effective magnetic field also a periodic function of coordinates. These effects
are small near the upper critical magnetic field but in general even numerical
calculations of the energy spectrum are rather difficult in superconductors
[1, 2, 3]. In view of the above reasoning we will consider a more simple case
assuming that ∆(r) is a known function of coordinate and neglecting the
spatial dependence of the magnetic field. The latter in the Landau problem
was studied in [4, 5]. We will call a model we use below for the Landau
energy spectrum calculations "a two-band model".

2 Basic equations

The wave function in the two-band model has two components

ψ (r) =

µ
u (r)
v (r)

¶
, (1)

which are normalized by the condition

|u (r)|2 + |v (r)|2 = 1. (2)

The Schrödinger equation for the two-component wave function reads

Ĥ

µ
u (r)
v (r)

¶
= E

µ
u (r)
v (r)

¶
. (3)

A specific form of the matrix-Hamiltonian Ĥ depends on the physics behind
the two-band model as we have discussed it in the Introduction. The gap
may be due to the periodicity of the lattice or superlattice potential or due
to the correlations between the charged particles (electrons, in superconduc-
tors). We do not go into these details here and just adopted the Hamiltonian
Ĥ in the Bogoliubov-de Gennes form

Ĥ =

µ
ĤA ∆

∆ −ĤA

¶
, (4)
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where
ĤA =

1

2m

³
p̂−e

c
A
´2 −EF . (5)

Here EF is the Fermi energy,m and e stand for the electron mass and charge,
c is the speed of light.

We assume here for more generality that ∆ is a function of the spatial
coordinate r, i.e. ∆ = ∆ (r). In the basis of the eigenfunctions of the
Hamiltonian (5) which satisfy an equation

ĤAϕn (r) = εnϕn (r) (6)

the equations for the u− v functions can be written as follows

u (r) =
X
n

unϕn (r) , v (r) =
X
n

vnϕn (r) , (7)

(εn −E)un +
X
m

∆nmvm = 0, (8)

X
m

∆nmum − (εn +E) vn = 0.

The specific form of the ϕn (r) depends on the gauge choice, whereas the
Landau spectrum, εn = ~Ω (n+ 1/2) − EF is the gauge invariant (Ω =
eB/mc is the cyclotron frequency).

The matrix element of ∆ is equal to

∆nm =

Z
ϕ∗n (r)∆ (r)ϕn (r) dr. (9)

We consider here a two-dimensional case in the Landau gauge A = (0, Bx)
so that the basis functions are

ϕn (r) = ψNX (r) = L−1/2 exp
µ
−iXy

L2H

¶
ψN

µ
x−X

LH

¶
, (10)

where

ψN (q) =
HN (q)√
2NN !π1/2

exp

µ
−q

2

2

¶
(11)

is the wave function of the oscillator, HN (q) is the Hermitian polynomial of
the order N , L2H = ~c/eB is the magnetic length. We also employ a complex
index (n ≡ N,X) composed of the two quantum numbers: the Landau level
number N , and the coordinate of the Landau orbit center, X = − (cpy/eB);
L is the size of a sample along the Y -axis.
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Equations (8) can not be solved without additional assumptions with re-
sect to the function ∆ (r) and the corresponding matrix element ∆nm which
in general is a complex function of the two quantum numbers decreasing
exponentially with the enhancement of the parameter |n−m|. Fortunately,
for some physical applications (vortex lattice in superconductors, for exam-
ple) ∆nm can be taken in the following approximate form [6]

∆nm ≈ ∆N−m. (12)

We will use this equation as a model approach which makes possible ana-
lytical calculations. Another option is the perturbation theory.

3 The perturbative approach

To develop a perturbation theory on a basis of Eqs.(8) we first exclude one
of the two components (un or vn) from these equations. Excluding vn, we
have

(E − εn)un −
X
k

σnk (E)uk = 0. (13)

This equation has a form of the Schrödinger equation for some fictitious
”particle on a lattice” with the hopping integrals

σnk (E) =
X
m

∆nm∆mk

E + εm
. (14)

The Green’s function of Eq.(13) satisfies the following equationX
m

[(E − εn) δnm − σnm(E)]Gmk(E) = δnk. (15)

The diagonal element of the Green’s function can be written in the form:

Gnn (E) = [E − εn − Σn(E)]−1 , (16)

where the self-energy Σn(E) is given by

Σn(E) = σnn (E) +
X
k 6=n

σnkΓkn
E − εk − σkk

. (17)

The function Γnm here satisfies the integral equation

Γnm = σnm +
X

k 6=n,m

σnkΓkm
E − εk − σkk

, (18)
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which is equivalent to an infinite series in powers of σnm in the right-hand-
side of this equation.

The energy spectrum of the system under consideration is determined
by poles of the diagonal matrix element of the Green’s function (16). In
general this is a difficult problem, which nonetheless, can be solved for some
specific cases. In case of ∆ = const the matrix element ∆nm (9) has only
diagonal terms ∆nm = ∆δnm and the self-energy

Σn(E) ≡ σnn ≡ ∆2

E + εn
(19)

since all the other terms in the series (17) are equal to zero. The energy
spectrum in this case equals to

En =

sµ
~Ω
µ
n+

1

2

¶
−EF

¶2
+∆2. (20)

When ∆nm is small, i.e. |∆nm| ¿ |εn − εm|, Eqs.(16)-(18) yield a per-
turbation series corrections for the Landau level εn:

En = εn +
X
m

|∆nm|2
εn + εm

+ ... (21)

Now turn to the case of Eq.(12) for which a quasiclassical approach can be
developed.

4 The quasiclassical approach

To develop a quasiclassical approach to the problem in question we first put
the matrix elements ∆nm in the form given by Eq.(12) into the Eq.(8) to
obtain

[~Ω (N −N0)− δ −E]uNX +
X
M,X0

∆N−MvMX0 = 0,

X
M,X0

∆N−MuMX0 − [~Ω (N −N0)− δ +E] vNX = 0, (22)

where N0 is the integer part of the ratio EF/~Ω so that EF = ~ΩN0 + δ.
The summation on the Landau orbit position X, in fact, is an integration

over the variable X:
P

X ≡ 1
Lx

R Lx
0 dx, where Lx stands for the sample size

in the X direction.
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Taking this into account and counting N from the N0 À 1, we have

(~ΩN − δ −E) ũN +
X
M

∆N−M ṽM = 0,

X
M

∆N−M ũM − (~ΩN − δ +E) ṽN = 0, (23)

where
ũN =

X
X

uNX , , ṽN =
X
X

vNX . (24)

One can rewrite Eq.(23) in the form of the differential equations with the
help of the Fourier transform

f (ϕ) =
X
N

e−iNϕfN , , fN =
1

2π

Z π

−π
eiNϕf (ϕ) dϕ. (25)

Applying this transform to Eq.(23) we obtainµ
i~Ω

d

dϕ
−E − δ

¶
u (ϕ) +∆ (ϕ) v (ϕ) = 0,

∆ (ϕ)u (ϕ)−
µ
i~Ω

d

dϕ
+E − δ

¶
v (ϕ) = 0, (26)

where ½
u (ϕ) =

P
N e−iNϕũN ,

v (ϕ) =
P

N e−iNϕṽN ,
(27)

and
∆ (ϕ) =

X
N

eiNϕ∆N. (28)

All these functions are 2π-periodic since a substitution ϕ→ ϕ+2π does not
change them.

A transformation

u (ϕ) = e−i
δ
~Ωϕū (ϕ) , (29)

v (ϕ) = e−i
δ
~Ωϕv̄ (ϕ)

helps to rid of the quantity δ in Eqs.(26) and a substitution

ū (ϕ) =
1

2
(P (ϕ)− iQ (ϕ)) , (30)

v̄ (ϕ) =
1

2
(Q (ϕ)− iP (ϕ))
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yields the following equations for the new functions P (ϕ) and Q (ϕ):

−~2Ω2d
2P

dϕ2
+W (ϕ)P = E2P, (31)

Q =
1

E

µ
−~ΩdP

dϕ
+∆ (ϕ)P

¶
. (32)

The equation for P (ϕ) can be written then in the standard Schrödinger
form

ĤWP (ϕ) = E2P (ϕ) (33)

with the Hamiltonian

ĤW = −~2Ω2 d2

dϕ2
+W (ϕ) , (34)

where W (ϕ) is periodic potential

W (ϕ) = ∆2 (ϕ) + ~Ω
d∆ (ϕ)

dϕ
. (35)

The hamiltonian ĤW has the very same ”superpotential” form as the
Hamiltonian of the Wittens supersymmetric quantum mechanics. The pe-
riodicity of the potential W (ϕ) is a consequence of the periodicity of the
function ∆ (ϕ) = ∆ (ϕ+ 2π) which is periodic because of the model ap-
proach adopted by Eq.(12). It was shown in [6] that this approximation for
the matrix elements holds for the spatially periodic ”off diagonal” potential
∆ (r) due to the vortex-lattice. This periodicity lifts up the Landau levels
degeneracy on the orbit center position and broaden them into the dispersive
Landau bands.

Figure 1: The band formation by periodic superpotential W (ϕ). See text
for more details.
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Consider how these bands appear within the quasiclassical approach to
the Schrödinger equation (33) in case when E2 < maxW (ϕ) as it is shown
in Fig.1.

Eq.(33) can be written in a form suitable for the quasiclassical solution

d2P

dϕ2
+ k2 (ϕ)P = 0, (36)

where
k (ϕ) =

1

~Ω
p
E2 −W (ϕ). (37)

The standard quasiclassical quantization rule then yieldsI
k (ϕ) dϕ = 2π

µ
n+

1

2

¶
+
(−1)n
π

arcsin [ρ cos (2πq)] . (38)

The quantity

ρ = exp

µ
−B0
B

¶
(39)

is a tunneling probability between the two adjacent potential wells in Fig.
1. It has the same exponential dependence on the magnetic field B as the
magnetic breakdown probability [7]. The ”breakdown magnetic field” is
given by

B0 =
mc

e~

Z b

a

p
W (ϕ)−E2dϕ. (40)

The Bloch index q vary within the interval [0, 1]. We can write the
quantization rule (38) in the form

1

2π

I p
E2 −W (ϕ)dϕ = ~Ω

µ
n+

1

2

¶
+ ε (ρ, q) , (41)

where ε (ρ, q) is a dispersion within the Landau band

ε (ρ, q) =
(−1)n
π

~Ω arcsin [ρ cos (2πq)] . (42)

Within the quasiclassical approximation the Landau bands in our problem
have the same structure as in the case of coherent magnetic breakdown in
organic superconductors [7]. They appear as a result of the lifting up a
degeneracy of the Landau levels by the periodic gap function ∆(r) which
makes possible to approximate the matrix elements by ∆nm ≈ ∆n−m [6]. In
a general case ∆nm is not a function of the difference n−m and the problem
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became untractable analytically. As we see, our model approach yields a
simple analytic solution for the energy spectrum compatible qualitatively
with the Landau band spectrum obtained numerically [1, 2, 3].

The width of the Landau bands is equal to

∆ε =
2~Ω
π
arcsin ρ. (43)

In case B À B0 when ρ → 1 and ∆ε → ~Ω the gap between the Landau
bands vanishes as it is shown in Fig.2.

Figure 2: The Landau bands for small (a) and strong (b) magnetic break-
down effect. These bands appear as a result of the lifting up of the Landau
levels degeneracy by the periodic gap potential ∆(r).

The Landau bands produces a special magnetic-breakdown factors in de
Haas-van Alphen oscillations which strongly modulates the magnetic field
dependence of oscillations in the superconducting vertex state [5].

The author acknowledges numerous discussions with Israel Vagner on
different problems in physics as well as on diverse life issues. Isya was a real
friend for many people and a bright memory of him will be with us forever.
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