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Abstract

We review results on evaluation of loss of information in quantum
registers due to their interactions with the environment. It is demon-
strated that an optimal measure of the level of quantum noise effects
can be introduced via the maximal absolute eigenvalue norm of devi-
ation of the density matrix of a quantum register from that of ideal,
noiseless dynamics. For a semiconductor quantum dot charge qubits
interacting with acoustic phonons, explicit expressions for this measure
are derived. For a broad class of environmental modes, this measure
is shown to have the property that for small levels of quantum noise it
is additive and scales linearly with the size of the quantum register.

PACS: 03.65.Yz, 85.35.Be, 03.67.Lx, 63.20.Kr

1 Introduction

In recent years, there has been significant progress in quantum computation
and design of solid-state quantum information processors [1 - 16]. Quantum
computers promise enormous speed-up of computation of certain very im-
portant problems, including factorization of large numbers [1] and search [2].
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However, practically useful quantum information processing devices have not
been made yet. One of the major obstacles to scalability has been decoher-
ence. This is due to the fact that the effect of quantum speed-up is crucially
dependent upon the coherence of quantum registers. Therefore, understand-
ing the dynamics of coherence loss has drawn significant experimental and
theoretical effort.

In general, decoherence [17 - 38] reveals itself in most experiments with
quantum objects. It is a process whereby the quantum coherent physical
system of interest interacts with the environment and, because of this in-
teraction, changes its evolution from unperturbed “ideal” dynamics. The
change of the dynamics is reflected by the corresponding change of the den-
sity matrix [39 - 43] of the system. The time-dependence of the system’s
density matrix should be evaluated for an appropriate model of the system
and its environment. If a multi-particle quantum system is considered then
the respective density matrix becomes rather large and difficult to deal with.
This occurs even for relatively small quantum registers containing just a few
quantum bits (qubits). In this paper, we review evaluation of decoherence
effects starting from the system Hamiltonian and followed by the definition
and estimation of a decoherence error-measure in a quantum information
processing “register” composed of several qubits.

The paper is organized as follows: In Section 2, we consider a specific
example of a solid state nanostructure. As a representative model for a
qubit, we consider an electron in a semiconductor double quantum dot sys-
tem. We derive the evolution of the density matrix of the electron, which
losses coherence due to interaction with phonons. In Section 3, we define a
measure characterizing decoherence and show how to calculate it from the
density matrix elements for a semiconductor double quantum dot system
introduced earlier. Finally, in Section 4, we establish that the measure of
decoherence introduced, is additive for several-qubit registers, i.e., the total
“computational error” scales linearly with the number of qubits.

2 Semiconductor Quantum Dot Charge Qubit

Solid-state nanostructures attracted much attention recently as a possible
basis for large scale quantum information processing [44]. Most stages of
their fabrication can be borrowed from existing fabrication steps in mi-
croelectronics industry. Also, only microelectronics technology has demon-
strated the ability to create and control locally evolution of thousands of
nano-objects, which is required for quantum computation. There were sev-
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eral proposals for semiconductor qubits, reviewed, e.g., in [24]. In particular,
the encoding of quantum information in the position of the electron was in-
vestigated in [45 - 49]. In [50] it was argued that an electron in a typical
quantum dot will loose coherence very fast which will prevent it from being
a good qubit. However, this problem can be resolved with sophisticated
designs of quantum-dot arrangements, e.g., arrays of several quantum dots,
if properly designed [51], can form a coherent quantum register. It was also
shown that a symmetric layout of just two quantum dots can strongly di-
minish decoherence effects due to phonons and other environmental noises
[52 - 54].

Recent successful observations [55 - 59] of spatial evolution of an elec-
tron in symmetric semiconductor double dot systems have experimentally
confirmed that such a system is capable of maintaining coherence at least
on time scales sufficient for observation of several cycles of quantum dynam-
ics. In the above experiments measurements were performed at very low
substrate temperatures of few tens of mK, in order to avoid additional ther-
mally activated sources of decoherence. Theoretical results on the influence
of the temperature on the first-order phonon relaxation rates in double dot
systems were presented in [60, 61].

In view of the above experimental advances, we have chosen a single
electron in semiconductor double quantum dot system, whose dynamics is
affected by vibrations of the crystal lattice, as a representative example
of a quantum coherent system interacting with the environment. In the
range of parameters corresponding to experiments [55, 57 - 59] phonons
dominate decoherence. Of course, for different systems or for similar systems
in different ranges of external conditions some other sources of decoherence
may prevail, for example, noise due to hopping of charge carries on nearby
traps, studied in [62, 63], or due to the electron-electron interaction [64].

Semiconductor double quantum dot creates three-dimensional double
well confinement potential for electron in it. Let us denote the line connect-
ing centers of the dots as the x-axis. Then the electron confining potential
along x, is schematically shown in Fig. 1. The nanostructure is composed
of two quantum dots with a potential barrier between them. Parameters
of the structure are properly adjusted so that two lower energy levels of
spatial quantization lie very close to each other compared to the external
temperature and to the distances to higher energy levels. Therefore hopping
of the electron to higher levels is suppressed. The electron is treated as a
superposition of two basis states, |0i and |1i, corresponding to “false” and
“true” in Boolean logic,

ψ = αψ0 + βψ1. (1)
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Figure 1: Double well potential.

It should be noted that the states that define the “logical” basis are not
the ground and first excited states of the double-dot system. Instead, ψ0
(the “0” state of the qubit) is chosen to be localized at the first quantum
dot and, in a zeroth order approximation, be similar to the ground state
of that dot if it were isolated. Similarly, ψ1 (the “1” state) resembles the
ground state of the second dot (if it were isolated). This assumes that the
dots are sufficiently (but not necessarily exactly) symmetric. We denote the
coordinates of the potential minima of the dots (dot centers) as vectors R0
and R1, respectively. The separation between the dot centers is

L = R1 −R0. (2)

The Hamiltonian of an electron interacting with a phonon bath consists
of three terms

H = He +Hp +Hep. (3)

The electron term is

He = −1
2
εA(t)σx − 1

2
εP (t)σz, (4)

where σx and σz are Pauli matrices, whereas εA(t) and εP (t) can have time-
dependence, as determined by unitary single-qubit quantum gate-functions
to be implemented for specific quantum algorithm. This can be achieved by
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adjusting the potential on the metallic nanogates surrounding the double-dot
system. For constant εA and εP , the energy splitting between the electron
energy levels is

ε =
q
ε2A + ε2P . (5)

The Hamiltonian term of the phonon bath is described by

Hp =
X
q,λ

~ωq b†q,λbq,λ, (6)

where b†q,λ and bq,λ are the creation and annihilation operators of phonons,
respectively, with the wave vector q and polarization λ. We approximate
the acoustic phonon spectrum as isotropic one with a linear dispersion

ωq = sq, (7)

where s is the speed of sound in the semiconductor crystal.
In the next few paragraphs we show that the electron-phonon interaction

can be expressed as

Hep =
X
q,λ

σz

³
gq,λb

†
q,λ + g∗q,λbq,λ

´
, (8)

with the coupling constants gq,λ determined by the geometry of the double-
dot and the properties of the material. The derivation follows [53, 54]. The
piezoacoustic electron-phonon interaction [65] is given by

Hep = i
X
q,λ

s
~

2ρsqV
Mλ(q)F (q)(bq + b†−q), (9)

where ρ is the density of the semiconductor, V is volume of the sample, and
for the matrix element Mλ(q), one can derive

Mλ(q) =
1

2q2

X
ijk

(ξiqj + ξjqi)qkMijk. (10)

Here ξj are the polarization vector components for polarization λ, while
Mijk express the electric field as a linear response to the stress,

Ek =
X
ij

MijkSij . (11)
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For a crystal with zinc-blende lattice, like GaAs, the tensor Mijk has only
those components non-zero for which all three indexes i, j, k are different;
furthermore, all these components are equal, Mijk =M . Thus, we have

Mλ(q) =
M

q2
(ξ1q2q3 + ξ2q1q3 + ξ3q1q2). (12)

The form factor F (q) accounting for that we are working with electrons
which are not usual plane waves, is given by

F (q) =
X
j,k

c†jck
Z

d3rφ∗j (r)φk(r)e
−iq·r, (13)

where ck, c
†
j are the annihilation and creation operators of the basis states

k, j = 0, 1. In quantum dots formed by a repulsive potential of nearby gates,
an electron is usually confined near the potential minima, which are approx-
imately parabolic. Therefore the ground states in each dot have Gaussian
shape

φj(r) =
e−|r−Rj |2/2a2

a3/2π3/4
, (14)

where 2a is a characteristic size of the dots.
We assume that the distance between the dots, L = |L|, is sufficiently

large compared to a, and that the different dot wave functions do not
strongly overlap,¯̄̄̄ Z

d3rφ∗j (r)φk(r)e
−iq·r

¯̄̄̄
¿ 1, for j 6= k. (15)

In other words tunneling between the dots is small, as is the case for the
recently studied experimental structures [55, 66 - 68], where the splitting
due to tunneling, measured by εA, was just several tens of µeV, while the
electron quantization energy in each dot was at least several meV.

For j = k, we obtainZ
d3rφ∗j (r)φj(r)e

−iq·r =
1

a3π3/2

Z
d3re−|r−Rj |2/a2e−iq·r

= e−iq·Rje−a
2q2/4. (16)

The resulting form factor is

F (q) = e−a
2q2/4e−iq·R(c†0c0e

iq·L/2 + c†1c1e
−iq·L/2), (17)
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where R = (R0 +R1) /2. Therefore

F (q) = e−a
2q2/4e−iq·R [cos(q · L/2)I + i sin(q · L/2)σz] , (18)

where I is the identity operator. Only the last term in (18) represents an
interaction affecting the qubit states. It leads to a Hamiltonian term of the
form (8), with coupling constants

gq,λ = −
s

~
2ρqsV

Me−a
2q2/4−iq·R

×(ξ1e2e3 + ξ2e1e3 + ξ3e1e2) sin(q · L/2), (19)

where ek = qk/q.
The general form of qubit evolution controlled by the Hamiltonian term

(4) is time dependent. Decoherence estimates for some solid-state systems
with certain shapes of time dependence of the system Hamiltonian were
reported recently [38, 69, 70]. However, such estimations are rather sophis-
ticated. To avoid this difficulty we observe that all single-qubit rotations
which are required for quantum algorithms can be successfully performed
by using two constant-Hamiltonian gates without loss of quantum speed-up,
e.g., by amplitude rotation gate and phase shift gate [71]. To implement
these gates one can keep the Hamiltonian term (4) constant during the
implementation of each gate, adjusting the parameters εA and εP as appro-
priate for each gate and for the idling qubit in between gate functions. In
the next paragraph we initiate our consideration of decoherence during the
implementation of the NOT amplitude gate. Then consider π-phase shift
gate later in the section.

The quantum NOT gate is a unitary operator which transforms the states
|0i and |1i into each other. Any superposition of |0i and |1i transforms
accordingly,

NOT(α|0i+ β|1i) = β|0i+ α|1i. (20)

The NOT gate can be implemented by properly choosing εA and εP in the
Hamiltonian term (4). Specifically, with constant

εA = ε (21)

and

εP = 0, (22)
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the “ideal” NOT gate function is carried out, with these interaction para-
meters, over the time interval

τ =
π~
ε
. (23)

The major source of quantum noise for double-dot qubit subject to the
NOT-gate type coupling, is relaxation involving energy exchange with the
phonon bath (i.e., emission and absorption of phonons). Here it is more
convenient to study the evolution of the density matrix in the energy basis,
{|+i , |−i}, where

|±i = (|0i ± |1i) /
√
2. (24)

Then, assuming that the time interval of interest is [0, τ ], the qubit density
matrix can be expressed [41] in the energy basis as

ρ(t) =


ρth++ +

£
ρ++(0)− ρth++

¤
e−Γt ρ+−(0)e−(Γ/2−iε/~)t

ρ−+(0)e−(Γ/2+iε/~)t ρth−− +
£
ρ−−(0)− ρth−−

¤
e−Γt

. (25)

This is a standard Markovian approximation for the evolution of the density
matrix. For large times, this type of evolution would in principle result in
the thermal state, with the off-diagonal density matrix elements decaying to
zero, while the diagonal ones approaching the thermal values proportional
to the Boltzmann factors corresponding to the energies ±ε/2. However, here
we are only interested in such evolution for a relatively short time interval,
τ , of a NOT gate. The rate parameter Γ is simply the sum [41] of the phonon
emission rate, W e, and absorption rate, W a,

Γ =W e +W a. (26)

The probability for the absorption of a phonon due to excitation from
the ground state to the upper level is

wλ =
2π

~
|hf |Hep|ii|2δ(ε− ~sq), (27)

where |ii is the initial state with the extra phonon with energy ~sq and |fi
is the final state, q is the wave vector, and λ is the phonon polarization.
Thus, we have to calculate

W a =
X
q,λ

wλ =
V

(2π)3

X
λ

Z
d3q wλ. (28)
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For the interaction (8) one can derive

wλ =
2π

~
|gq,λ|2N thδ(ε− ~sq), (29)

where

N th =
1

exp(~sq/kBT )− 1 (30)

is the phonon occupation number at temperature T , and kB is the Boltz-
mann constant.

The coupling constant in (19) depends on the polarization if the inter-
action is piezoelectric. For longitudinal phonons, the polarization vector
has Cartesian components, expressed in terms of the spherical-coordinate
angles,

ξ
k
1 = e1 = sin θ cosφ, ξ

k
2 = e2 = sin θ sinφ, ξ

k
3 = e3 = cos θ, (31)

where ej = qj/q. For transverse phonons, it is convenient to define the two
polarization vectors ξ⊥1i and ξ⊥2i to have

ξ⊥11 = sinφ, ξ⊥12 = − cosφ, ξ⊥13 = 0, (32)

ξ⊥21 = − cos θ cosφ, ξ⊥22 = − cos θ sinφ, ξ⊥23 = sin θ. (33)

Then for longitudinal phonons, one obtains [54]

wk =
π

ρsV q
M2e−a

2q2/4 (34)

× 9 sin4 θ cos2 θ sin2 φ cos2 φ sin2(qL cos θ/2).

For transverse phonons, one gets

w⊥1 =
π

ρsV q
M2e−a

2q2/4(−2 sin θ cos2 θ sinφ cosφ
+sin3 θ cosφ sinφ)2 sin2(qL cos θ/2), (35)

w⊥2 =
π

ρsV q
M2e−a

2q2/4(−2 sin θ cos θ cos2 φ
+sin θ cos θ sin2 φ)2 sin2(qL cos θ/2). (36)
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By combining these contributions and substituting them in (28), one can
obtain the probability of absorption of a phonon for all polarizations,

W a
piezo =

M2

20πρs2~L5k4
exp

³
−a2k2

2

´
exp

³
~sk
kBT

´
− 1

(37)

×
n
(kL)5 + 5kL

h
2 (kL)2 − 21

i
cos (kL)

+ 15
h
7− 3 (kL)2

i
sin (kL)

o
,

where
k =

ε

~s
(38)

is the wave-vector of the absorbed phonon.
Finally, the expressions for the phonon emission rates, W e, can be ob-

tained by multiplying the above expression, (37), by (Nth + 1)/Nth.
The π phase gate is a unitary operator which does not change the ab-

solute values of the probability amplitudes of a qubit in the superposition of
the |0i and |1i basis states. instead it increases the relative phase between
the probability amplitudes by π angle. Consequently, superposition of |0i
and |1i transforms according to

Π (α|0i+ β|1i) = α|0i− β|1i. (39)

Over a time interval τ , the π gate can be carried out with constant interac-
tion parameters,

εA = 0 (40)

and

εP = ε =
π~
τ
. (41)

Charge qubit dynamics during implementation of phase gates was inves-
tigated in [53]. The relaxation dynamics is suppressed during the π gate,
because there is no tunneling between the dots. The main quantum noise
then results due to pure dephasing. It leads to the decay of the off-diagonal
qubit density matrix elements, while keeping the diagonal density matrix
elements unchanged. The qubit density matrix can be represented in this
regime as [72, 73]

ρ(t) =


ρ00(0) ρ01(0)e

−B2(t)+iεt/~

ρ10(0)e
−B2(t)−iεt/~ ρ11(0)

 , (42)
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with the spectral function,

B2(t) =
8

~2
X
q,λ

|gq,λ|2
ω2q

sin2
ωqt

2
coth

~ωq
2kBT

=
V

~2π3

Z
d3q

X
λ

|gq,λ|2
q2s2

sin2
qst

2
coth

~qs
2kBT

. (43)

For the piezoelectric interaction, the coupling constant gq,λ was obtained
in (19), and expression for the spectral function is

B2piezo(t) =
M2

2π3~ρs3

Z ∞

0
q2dq

Z π

0
sin θdθ

Z 2π

0
dϕ

×
X
λ

(ξλ1e2e3 + ξλ2e1e3 + ξλ3e1e2)
2

q3
exp(−a2q2/2)

× sin2(qL cos θ) sin2 qst
2
coth

~qs
2kBT

. (44)

In summary, in this section we obtained the leading-order expressions
for the semiconductor double-dot qubit density matrix in the presence of
decoherence due to piezoelectric interaction with acoustic phonons during
implementation of amplitude and phase gates.

3 Quantification of Decoherence

Quantum information processing at the level of qubits and few-qubit regis-
ters, assumes near coherent evolution, which is at best achievable at short
to intermediate times. Therefore attention has recently shifted from large-
time system dynamics in the regime of onset of thermalization, to almost
perfectly coherent dynamics at shorter times. Since many quantum systems
proposed as candidates for qubits for practical realizations of quantum com-
puting require estimation of their coherence, quantitative characterization of
decoherence is crucially important for quantum information processing [4 -
6, 46 - 50, 52, 55, 60, 61, 66 - 68, 71, 74 - 102]. A single measure characteriz-
ing decoherence is highly desirable for comparison of different qubit designs.
Besides the evaluation of single qubit performance one also has to analyze
scaling of decoherence as the register size (the number of qubits involved)
increases. Direct quantitative calculations of decoherence of even few-qubit
quantum registers are not feasible. Therefore, a practical approach has been
to explore quantitative measures of decoherence [100], develop techniques to
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calculate such measures at least approximately for realistic one- and two-
qubit systems [53, 54], and then establish scaling (additivity) [101, 102] for
several-qubit quantum systems.

In this section, we outline different approaches to define and quantify
decoherence. We argue that a measure based on a properly defined as a
certain operator norm of deviation of the density matrix from ideal, is the
most appropriate for quantifying decoherence in quantum registers.

We consider several approaches to generally quantifying the degree of
decoherence due to interactions with environment. We first mention the
approach based on the asymptotic relaxation time scales. The entropy and
idempotency-defect measures are then reviewed. The fidelity measure of
decoherence is considered next. Finally, we introduce our operator norm
measure of decoherence. Furthermore, we discuss an approach to eliminate
the initial-state dependence of the decoherence measures.

Markovian approximation schemes typically yield exponential approach
to the limiting values of the density matrix elements for large times [40 - 42].
For a two-state system, this defines the time scales T1 and T2, associated,
respectively, with the approach by the diagonal (thermalization) and off-
diagonal (dephasing, decoherence) density-matrix elements to their limiting
values. More generally, for large times we approximate deviations from
stationary values of the diagonal and off-diagonal density matrix elements
as

ρkk(t)− ρkk(∞) ∝ e−t/Tkk , (45)

ρjk(t) ∝ e−t/Tjk (j 6= k). (46)

The shortest time among Tkk is often identified as T1. Similarly, T2 can
be defined as the shortest time among Tn6=m. These definitions yield the
characteristic times of thermalization and decoherence (dephasing).

Unfortunately the exponential behavior of the density matrix elements
in the energy basis is applicable only for large times, whereas for quantum
computing applications, the short-time behavior is usually relevant [31].
Moreover, while the energy basis is natural for large times, the choice of
the preferred basis is not obvious for short and intermediate times [31, 72].
Therefore, the time scales T1 and T2 have limited applicability for evaluating
coherence in quantum computing.

An alternative approach is based on the calculation of the entropy [39]
of the system,

S(t) = −Tr (ρ ln ρ) , (47)
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or the first order entropy (idempotency defect) [103 - 105],

s(t) = 1− Tr ¡ρ2¢ . (48)

Both expressions are basis independent, have a minimum at pure states and
effectively describe the degree of the state’s “purity.” Any deviation from
a pure state leads to the deviation from the minimal values, 0, for both
measures,

Spure state(t) = spure state(t) = 0. (49)

Unfortunately, entropy measures the deviation from pure-state evolution
rather than deviation from a specific ideal evolution.

The fidelity measure, considered presently, has been widely used. If the
Hamiltonian of the system and environment is

H = HS +HB +HI , (50)

where HS is the internal system dynamics, HB gives the evolution of envi-
ronment (bath), and HI describes system-bath interaction, then the fidelity
measure [106, 107] can be defined as,

F (t) = TrS [ ρideal(t) ρ(t) ] . (51)

Here the trace is over the system degrees of freedom, and ρideal(t) represents
the pure-state evolution of the system under HS only, without interaction
with the environment (HI = 0). In general, the Hamiltonian term HS

governing the system dynamics can be time dependent. For the sake of sim-
plicity throughout this review we consider constant HS over time intervals
of quantum gates, cf. Section 2. In this case

ρideal(t) = e−iHStρ(0) eiHSt. (52)

More sophisticated scenarios with qubits evolving under time dependent HS

were considered in [38, 69, 70].
The fidelity provides a measure of decoherence in terms of the differ-

ence between the “real,” environmentally influenced evolution, ρ(t), and the
“ideal” evolution, ρideal(t). It will attain its maximal value, 1, only provided
ρ(t) = ρideal(t). This property relies on the added assumption the ρideal(t)
remains a projection operator (pure state) for all times t ≥ 0.

As an simple example consider a two-level system decaying to the ground
state, when there is no internal system dynamics,

ρideal(t) =

µ
0 0
0 1

¶
, (53)
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ρ(t) =

µ
1− e−Γt 0

0 e−Γt

¶
, (54)

and the fidelity is monotonic,

F (t) = e−Γt. (55)

Note that the requirement that ρideal(t) is a pure-state (projection op-
erator), excludes, in particular, any T > 0 thermalized state as the initial
system state. Consider the application of the fidelity measure for the infinite-
temperature initial state of our two level system. We get

ρ(0) = ρideal(t) =

µ
1/2 0
0 1/2

¶
, (56)

which is not a projection operator. The spontaneous-decay density matrix
is then

ρ(t) =

µ
1− (e−Γt/2) 0

0 e−Γt/2

¶
. (57)

The fidelity remains constant

F (t) = 1/2, (58)

and it does not provide any information of the time dependence of the decay
process.

Let us now consider the operator norms [108] that measure the deviation
of the system from the ideal state, to quantify the degree of decoherence,
as proposed in [100 - 102]. Such measures do not require the initial density
matrix to be pure-state. We define the deviation according to

σ(t) ≡ ρ(t)− ρideal(t). (59)

We can use, for instance, the eigenvalue norm [108],

kσkλ = maxi |λi| , (60)

or the trace norm,
kσkTr =

X
i

|λi|, (61)

etc., where λi are the eigenvalues of the deviation operator (59). Since den-
sity operators are Hermitian and bounded, their norms, as well the norm of
the deviation, can be always defined and evaluated by using the expressions
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shown, avoiding the more formal mathematical definitions. We also note
that kAk = 0 implies that A = 0.

The calculation of these norms is sometimes simplified by the observation
that σ(t) is traceless. Specifically, for two-level systems, we get

kσkλ =
q
|σ00|2 + |σ01|2 = 1

2
kσkTr . (62)

For our example of the two-level system undergoing spontaneous decay, the
norm is

kσkλ = 1− e−Γt. (63)

The measures considered above quantify decoherence of a system pro-
vided that its initial state is given. However, in quantum computing, it is
impractical to keep track of all the possible initial states for each quantum
register, that might be needed for implementing a particular quantum algo-
rithm. Furthermore, even the preparation of the initial state can introduce
additional noise. Therefore, for evaluation of fault-tolerance (scalability), it
will be necessary to obtain an upper-bound estimate of decoherence for an
arbitrary initial state.

To characterize decoherence for an arbitrary initial state, pure or mixed,
we proposed [100] to use the maximal norm, D, which is determined as an
operator norm maximized over all the initial density matrices(the worst case
scenario error estimate),

D(t) = sup
ρ(0)

µ
kσ(t, ρ(0))kλ

¶
. (64)

For realistic two-level systems coupled to various types of environmental
modes, the expressions of the maximal norm are surprisingly elegant and
compact. They are usually monotonic and contain no oscillations due to
the internal system dynamics. Most importantly, in the next section we will
establish the additivity property of the maximal norm of deviation measure.

Here we conclude by presenting the expressions for this measure for the
two gates for the semiconductor double-dot system introduced in preced-
ing section. The qubit error measure, D, was obtained from the density
matrix deviation from the “ideal” evolution by using the operator norm
approach [100]. After lengthy calculations, one gets [53] relatively simple
expressions for the NOT gate,

DNOT =
1− e−Γτ

1 + e−ε/kBT
, (65)
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and for the π gate,

Dπ =
1

2

h
1− e−B

2(τ)
i
, (66)

where all the parameters were defined in Section 2. A realistic “general”
noise estimate per typical quantum-gate cycle time τ , could be taken as the
larger of these two expressions.

4 Additivity of the Decoherence Measure

In the study of decoherence of several-qubit systems, one has to consider
the degree to which noisy environments of different qubits are correlated
[73, 101, 109]. Furthermore, if all constituent qubits are interacting with the
same bath, then there are methods to reduce decoherence without quantum
error correction, by instead encoding the state of one logical qubit in a
decoherence-free subspace of the states of several physical qubits [51, 73,
110 - 112]. In this section, we will consider several-qubit system and assume
the “worst case scenario,” i.e., that the qubits experience uncorrelated noise,
and each is coupled to a separate bath. Since analytical calculations for
several qubits are impractical, we have to find some “additivity” properties
that will allow us to estimate the error measure for the whole system from the
error measures of the constituent qubits. For a general class of decoherence
processes, including those occurring in semiconductor qubits considered in
Section 2, we argue that maximal deviation norm measure introduced in
Section 3 is additive.

The decoherence dynamics of a multiqubit system is rather complicated.
The loss of quantum coherence results also in the loss of two-particle and
several-particle entanglements in the system. The higher order (multi-qubit)
entanglements are “encoded” in the far off-diagonal elements of the multi-
qubit register density matrix, and therefore these quantum correlations will
decay at least as fast as the products of the decay factors for the qubits
involved, as exemplified by several explicit calculations [36, 113 - 115]. This
observation supports the conclusion that at large times the rates of decay
of coherence of the qubits will be additive.

However, here we seek a different result. We look for additivity prop-
erty which is valid not in the regime of the asymptotic large-time decay
of quantum coherence, but for short times, τ , of quantum gate functions,
when the noise level, namely the value of the measure D(τ) for each qubit,
is relatively small. In this regime, we will establish [101]: even for strongly
entangled qubits–which are important for the utilization of the power of
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quantum computation–the error measures D of the individual qubits in a
quantum register are additive. Thus, the error measure for a register made
of similar qubits, scales up linearly with their number, consistent with other
theoretical and experimental observations [106, 116, 117].

Thus, to characterize decoherence for an arbitrary initial state, pure or
mixed, we use the maximal norm, D, which was defined (64) as an opera-
tor norm maximized over all the possible initial density matrices. One can
show that 0 ≤ D(t) ≤ 1. This measure of decoherence will typically in-
crease monotonically from zero at t = 0, saturating at large times at a value
D(∞) ≤ 1. The definition of the maximal decoherence measure D(t) looks
rather complicated for a general multiqubit system. However, it can be eval-
uated in closed form for short times, appropriate for quantum computing,
for a single-qubit (two-state) system. We then establish an approximate
additivity that allows us to estimate D(t) for several-qubit systems as well.

The evolution of the reduced density operator of the system (51) and the
one for the ideal density matrix (52) can be formally expressed [71, 96, 97]
in the superoperator notation as

ρ(t) = T (t)ρ(0), (67)

ρ(i)(t) = T (i)(t)ρ(0), (68)

where T , T (i) are linear superoperators. The deviation matrix can be ex-
pressed as

σ(t) =
h
T (t)− T (i)(t)

i
ρ(0). (69)

The initial density matrix can decomposed as follows,

ρ(0) =
X
j

pj |ψjihψj |, (70)

where
P

j pj = 1 and 0 ≤ pj ≤ 1. Here the wavefunction set |ψji is not
assumed to have any orthogonality properties. Then, we get

σ (t, ρ(0)) =
X
j

pj

h
T (t)− T (i)(t)

i ¯̄
ψj

® 
ψj

¯̄
. (71)

The deviation norm can thus be bounded,

kσ(t, ρ(0))kλ ≤
°°°hT (t)− T (i)(t)

i
|φihφ|

°°°
λ
. (72)

Here |φi is defined according to°°°hT − T (i)
i
|φihφ|

°°°
λ
= max

j

°°°hT − T (i)
i
|ψjihψj |

°°°
λ
. (73)
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For any initial density operator which is a statistical mixture, one can always
find a density operator which is pure-state, |φihφ|, such that kσ(t, ρ(0))kλ ≤
kσ(t, |φihφ|)kλ. Therefore, evaluation of the supremum over the initial den-
sity operators in order to findD(t), see (64), can be done over only pure-state
density operators, ρ(0).

Consider briefly strategies of evaluating D(t) for a single qubit. We can
parameterize ρ(0) as

ρ(0) = U

 P 0
0 1− P

U†, (74)

where 0 ≤ P ≤ 1, and U is an arbitrary 2× 2 unitary matrix,

U =

 ei(α+γ) cos θ ei(α−γ) sin θ
−ei(γ−α) sin θ e−i(α+γ) cos θ

 . (75)

Then, one should find a supremum of the norm of deviation (60) over all
the possible real parameters P , α, γ and θ. As shown above, it suffices to
consider the density operator in the form of a projector and put P = 1.
Thus, one should search for the maximum over the remaining three real
parameters α, γ and θ.

Another parameterization of the pure-state density operators, ρ(0) =
|φihφ|, is to express an arbitrary wave function |φi = P

j(aj + ibj)|ji in
some convenient orthonormal basis |ji, where j = 1, . . . , N . For a two-level
system,

ρ(0) =

 a21 + b21 (a1 + ib1)(a2 − ib2)
(a1 − ib1)(a2 + ib2) a22 + b22

 , (76)

where the four real parameters a1,2, b1,2 satisfy a21 + b21 + a22 + b22 = 1, so
that the maximization is again over three independent real numbers. The
final expressions (65) and (66) for D(t), for our selected single-qubit systems
considered in Section 2, are actually quite compact and tractable.

In quantum computing, the error rates can be significantly reduced by
using several physical qubits to encode each logical qubit [51, 110, 111].
Therefore, even before active quantum error correction is incorporated [87 -
95], evaluation of decoherence of several qubits is an important, but formi-
dable task. Here our aim is to prove the approximate additivity of Dq(t),
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including the case of the initially entangled qubits, labeled by q, whose dy-
namics is governed by

H =
X
q

Hq =
X
q

(HSq +HBq +HIq) , (77)

where HSq is the Hamiltonian of the qth qubit itself, HBq is the Hamil-
tonian of the environment of the qth qubit, and HIq is corresponding qubit-
environment interaction. We consider a more complicated (for actual evalu-
ation) diamond norm [71, 96, 97], as an auxiliary quantity used to establish
the additivity of the more easily calculable operator norm D(t).

The establishment of the upper-bound estimate for the maximal devi-
ation norm of a multiqubit system, involves several steps. We first derive
a bound for this norm in terms of the diamond norm. Actually, for single
qubits, in several models the diamond norm can be expressed via the cor-
responding maximal deviation norm. At the same time, the diamond norm
for the whole quantum system is bounded by sum of the norms of the con-
stituent qubits by using a certain specific stability property of the diamond
norm, K(t). This norm is defined as

K(t) = kT − T (i)k¦ = sup k{[T − T (i)]⊗I} kTr. (78)

The superoperators T , T (i) characterize the actual and ideal evolutions ac-
cording to (67), (68). Here I is the identity superoperator in a Hilbert space
G whose dimension is the same as that of the corresponding space of the
superoperators T and T (i), and is an arbitrary density operator in the
product space of twice the number of qubits.

The diamond norm has an important stability property, proved in [71,
96, 97],

kB1⊗B2k¦ = kB1k¦kB2k¦. (79)

Note that (79) is a property of the superoperators rather than that of the
operators.

Consider a composite system consisting of two subsystems S1, S2, with
the noninteracting Hamiltonian

HS1S2 = HS1 +HS2 . (80)

The evolution superoperator of the system will be

TS1S2 = TS1⊗TS2 , (81)
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and the ideal one
T
(i)
S1S2

= T
(i)
S1
⊗T

(i)
S2
. (82)

The diamond measure for the system can be expressed as

KS1S2
= kTS1S2 − T

(i)
S1S2

k¦ = k(TS1 − T
(i)
S1
)⊗TS2 + T

(i)
S1
⊗(TS2 − T

(i)
S2
)k¦

≤ k(TS1 − T
(i)
S1
)⊗TS2k¦ + kT

(i)
S1
⊗(TS2 − T

(i)
S2
)k¦. (83)

By using the stability property (79), we get

KS1S2
≤ k(TS1 − T

(i)
S1
)⊗TS2k¦ + kT

(i)
S1
⊗(TS2 − T

(i)
S2
)k¦ =

kTS1 − T
(i)
S1
k¦kTS2k¦ + kT

(i)
S1
k¦kTS2 − T

(i)
S2
k¦ =

kTS1 − T
(i)
S1
k¦ + kTS2 − T

(i)
S2
k¦ = KS1

+KS2
. (84)

The inequality
K ≤

X
q

Kq, (85)

for the diamond norm K(t) has thus been obtained. Let us emphasize that
the subsystems can be initially entangled. This property is particularly
useful for quantum computing, the power of which is based on qubit entan-
glement. However, even in the simplest case of the diamond norm of one
qubit, the calculations are extremely cumbersome. Therefore, the use of the
measure D(t) is preferable for actual calculations.

For short times, of quantum gate functions, we can use (85) as an approx-
imate inequality for order of magnitude estimates of decoherence measures,
even when the qubits are interacting. Indeed, for short times, the interac-
tion effects will not modify the quantities entering both sides significantly.
The key point is that while the interaction effects are small, this inequality
can be used for strongly entangled qubits.

The two deviation-operator norms considered are related by the following
inequality

kσkλ ≤
1

2
kσkTr ≤ 1. (86)

Here the left-hand side follows from

Trσ =
X
j

λj = 0. (87)

Therefore the th eigenvalue of the deviation operator σ that has the maxi-
mum absolute value, λ = λmax, can be expressed as

λ = −
X
j 6=

λj . (88)
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Thus, we have

kσkλ =
1

2
(2|λ |) ≤ 1

2

|λ |+X
j 6=

|λj |
 =

1

2

X
j

|λj |
 =

1

2
kσkTr . (89)

The right-hand side of (86) then also follows, because any density matrix
has trace norm 1,

kσkTr = kρ− ρ(i)kTr ≤ kρkTr + kρ(i)kTr = 2. (90)

From the relation (90) it follows that

K(t) ≤ 2. (91)

By taking the supremum of both sides of the relation (89) we get

D(t) = sup
ρ(0)

kσkλ ≤
1

2
sup
ρ(0)

kσkTr ≤
1

2
K(t), (92)

where the last step involves technical derivation details [101] not reproduced
here. In fact, for a single qubit, calculations for typical qubit models [101]
give

Dq(t) =
1

2
Kq(t). (93)

Since D is generally bounded by (or equal to) K/2, it follows that the
multiqubit norm D is approximately bounded from above by the sum of the
single-qubit norms even for the initially entangled qubits,

D(t) ≤ 1
2
K(t) ≤ 1

2

X
q

Kq(t) =
X
q

Dq(t), (94)

where q labels the qubits.
For specific models of decoherence of the type encountered in Section 2,

as well as those formulated for general studies of short-time decoherence
[100], a stronger property has been demonstrated by deriving additional
bounds not reviewed here [101], namely that the noise measures are actually
equal, for low levels of noise,

D(t) =
X
q

Dq(t) + o

ÃX
q

Dq(t)

!
. (95)
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Thus, in this section we considered the maximal operator norm suitable
for evaluation of decoherence for a quantum register consisting of qubits
immersed in noisy environments. We established the approximate addi-
tivity property of this measure of decoherence for multi-qubit registers at
short times, for which the level of quantum noise is low, and the qubit-
qubit interaction effects are small, but without any limitation on the initial
entanglement of the qubit register.

In conclusion, we surveyed the theory of evaluation of quantum noise
effects for quantum registers. Maximal deviation norm was proposed for
error estimation and its expressions were presented for a realistic model of
semiconductor double-dot qubit interacting with acoustic phonons. Maximal
deviation norm has a unique additivity property which facilitates error rate
estimation for several-qubit registers.

We are grateful to A. Fedorov, D. Mozyrsky, D. Solenov, I. Vagner, and
D. Tolkunov for collaborations and instructive discussions. This research
was supported by the National Science Foundation, grant DMR-0121146.
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