Introduction to Nanotechnology

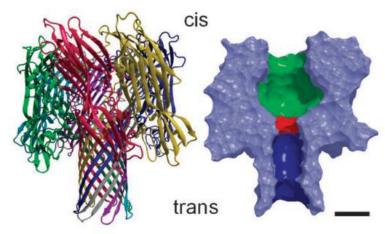
Department of Physics, Clarkson University, Potsdam, NY 13699

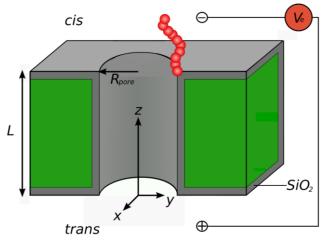
What is nanotechnology?

What is nanotechnology?

Nanotechnology is technology on the nanoscale, involving the manipulation of molecules and atoms.

The Nanoscale


- A nanometer is 10⁻⁹ meters
- For reference:
 - Width of an adult human nail is about 2×10^7
 - Width of a single hair human is about 10⁵ nanometers
 - Width of double-stranded DNA is about 2 nanometers
 - Diameter of an atom ranges from 0.1-0.5 nanometers


We work with computational models of nanopores.

Nanopores

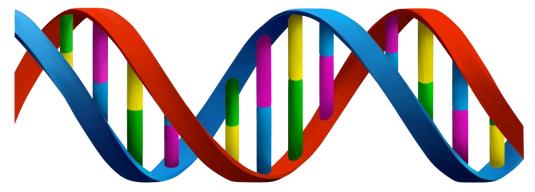
- Nanopores, pores on the nanoscale, can be biological or artificial
- Biological nanopores, or pore-forming proteins, are compatible with specific molecules and environment
- Artificial membranes, made from solid-state material, can be constructed for a specific task by having a particular geometry and environment

α-hemolysin pore (biological nanopore)^[1]

Silicon dioxide pore (artificial nanopore)^[2]

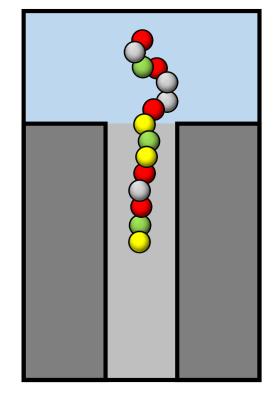
What was required to study this branch of nanotechnology?

Studying nanopore technology


In order to

- Biology of:
 - Biological polymers, such as DNA
 - Biological molecules, such as insulin
- Physics of:
 - Modeling the motion of nano-sized particles
 - Energy and forces on a polymer
 - Modeling the electrical environment of an electrolyte solution
- Computational programming abilities including:
 - Coding biological environments
 - Coding models of particle motion

What are some applications of this nanotechnology?


What are some applications of this nanotechnology?

- Biosensing, or identifying/characterizing molecules
- Rapid sequencing of polymers, such as DNA With a rapid, simple, and mobile way of sequencing a DNA polymer, whole new technologies that rely on your own unique DNA can be developed. This includes:
 - Medical advances, such as identifying potential predisposition to infection or genetic diseases
 - Security technologies, such as using your own DNA as a password rather than text
- Filtering proteins

Biosensing/Sequencing

- Molecules can be forced through a nanopore using an applied electric bias or fluid flow
- Identifying and characterizing various biomolecules is possible by measuring ionic current blockage in the nanopore
- Fast and cheap DNA sequencing may be developed utilizing a nanopore

Single-stranded DNA translocating nanopore. Each differently colored bead represents a different nucleotide.

Other Nanotechnologies

- Nanopore functionalities and applications
 - Membrane surface modifications
 - Polymer/protein modifications
 - Protein filtering
- Developing nanoparticles