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The usual formulation of the quantum Zeno eff6@ZE) uses a sequence of rapid observations to prevent
change. The same effect can be achieved with continuous observation. For partial inhibition of change we
provide a quantitative relation between pulgatlintervalsét) and continuougwith response timeg) obser-
vations: the slowdown is the same fétr= 475 . Including the continuous observer in the Hamiltonian gives an
alternative view of the QZE, showing the appropriateness of the name “dominated time evolution.” Finally,
the variation on the QZE in which a nonconstant sequence of projectiorfercathange is also shown to be
achievable by time-varying continuous observati®1050-29478)01303-1

PACS numbd(s): 03.65.Bz, 42.50.Lc.

I. INTRODUCTION the incorporation of continuous observation in the quantum

Th 't lati f th lled — fHamiItonian one dispenses with the black magic of “quan-
€ usual formulation of the so-cafled quantum 2£€no €ty measyrement” and develops an alternative perspective
fect (QZE) is the inhibition of decay due to frequent, inter-

) i 4 ) on the inhibition of decay. With this view it is not so much
mittent observation. An early question was the iSSUE®I-  {hat one watches the pot, but that the combined system and

tinuous observation. Many decays let their existence bespserver no longer can boil. Section V takes up a dynamical
known rapidly without official monitoring. Ana particle  yersion of the QZE in which the state on which the “mea-

from a nuclear decay creates a track, thereby constituting gurement” projects varies in time, forcing the system to
“measurement.” Or an atom decays and sensitive detectorghange. For this too we provide a continuous version.

irreversibly note the emitted photon. How can these decays
have taken place?

In this paper we make the point that continuous observa-
tion is an idealized concept, and any particular form it takes The system is an atom in an excited stgt®), able to
will have a characteristic time scale. When the scale is lesgecay to the ground statg0)) by emitting photons. The
than that for slowing the decay, were one to pulse observaHamiltonian is
tions at that frequency, then the “continuous observation”
would hinder the decay. If the time scale is longer, then it
would not. There have been investigations of the continuous H=ao| 1)(1] +E Z’kalak
versus pulsed problem, for example Réfs2], where other :
works are quoted. Our emphasis in the present paper is on " .
having a more realistic model of the continuous observation. + Ek [a,Pk|0)(1|+aydi[1){0]].

Moreover, the connection we do make has a quantitative

formulation, specificallyLet the time between pulsed obser-
vations beét, and let the time scale (defined below) for the
continuous observation bg,. Then asst— 0, the two forms

II. MONITORED DECAY

The atom’s ground-state energy is zero, dfjdhas energy

g, falling in the band{®,} associated with the photons.

of interference with the decay provide equal degrees of hin.ﬁAIth.Ough | speak of an “atom ".’md photons, t_he form_al-
ism is more generdllt is convenient to use matrix notation,

drance ifét=47q. s . .
Thus pulsing is inessential, as already suggested by th@niby subtractings, from the diagonaland definingw

characterization, “watched pot effecf2]. In any case, to ~ @k~ wo) we have
see significant hindrance of the decay, either of the charac-

teristic times must be below a time scale called the “jump 0 o X
time” [3,4]. This will be established both analytically and H=l o and =, |, @)
numerically.

In Sec. Il we calculate decay rates under various circum- | ¢ th ) )
stances. Unmonitored and pulsed-observation decay rates a#bere® andy are column vectors of the same dimension,

straightforward. For continuous observation a particular fornfNd @ is @ diagonal matrix. The Schilnger equatior(with
of observation is given and a modified decay rate computed:=1) becomes

In Sec. Ill the conclusions of Sec. Il are checked numeri-

cally. Following that, another line of inquiry is pursued: by ix=0ly, iy=wy+dx. 2
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TABLE I. Times defined. Prgl_N)(nondecay:[l_ (&)Z/TE]N, (7)
T Lifetime—ordinary with T=N4t. For fixedT and largeN, this gives
T7: Zeno time N) _ e 5
iy Jump time PEY(nondecay=exp(— T?/N73), (8)
ot Time interval for pulsed measurements which goes to unity foN—o. This is the standard QZE.
Tep Effective lifetime when subject to pulsed observations Consider, however, finit&l, or finite t. If the leading ap-
7o Response time of observer's apparatus proximation in Eq.(4) holds, then we obtain an effective
Tec Effective lifetime when being observed continuously. decay rate by setting

1—(8t)%/ 2~exp(— St/ Tep). 9

One generally derives decay rates from E2).by using the |, g way we have an effective lifetime, extended by the

Laplace transform. A quick way to reproduce that result is t0,,;sed measurements and dependent on the pulsing interval
assume time dependence pxp(E—il/2)t] for bothx and st whose valugfrom Eq.(9)] is

y. One obtains

Tep— T%/é\t (10)
T 1 p(w)|p(w)]?
—pt
E-i E_q) E—w—il/2 q)HJ’ do E—w—il/2"' B. Continuous observation
) The forms taken by continuous observation are many, so

that specific conclusions depend on the model of observa-
tion. Moreover, traditional thinking about measurement may
further hinder discussion, since ‘“measurement” may be
viewed as a trauma. Our approach, consistent with Réfs.

9], is that there is no evolution but quantum evolution. As
such it makes sense to consider the combined quantum dy-
namics of system and apparatus.

One way to monitor the decay is to have a laser shine on
the atom at the frequency of a transition from its ground state
to someother state, one with a short lifetime. In this way,
“as soon as” the decag}1)—|0)) occurs, the atom is yanked
to the other state whose irreversible decay provides the mea-
surement. This is the way that “quantum jumps” were ob-
served 10], and the present paper explains why those obser-

29 _ (42 4 vations did not stop the decay. This is also the framework of
XO=1=(t /7‘%)+O(t ) @ Ref. [11], where stronger fields are contemplated and the
decay can be stopped. Alternativel) might not be the
ground state, but is itself metastable with a short lifetime.

where the arrow indicates a continuum limitis the density
of states, andp the appropriate limit ofb. The usual ma-
nipulations now givel'=21p(0)|#(0)|?, the Fermi-Dirac
golden rule. Letr =1/T", the decay lifetime. We want the
short-time transient behavior, and return to E). The ini-
tial conditions arex(0)=1 andy(0)=0. We generate suc-
cessive time-zero derivatives »f

Dx(0)=0, D?x(0)=®'®d, D3%(0)=i®Twd,
D*x(0)=®T(w?+ DD P,

with D=d/dt. A power-series expansion fa(t) then gives

where 7, the Zeno timg5], is given by

Ty= 1OTD. (5) Yet another possibility is a nearby and rapidly responding
counter sensitive to the emitted photon.
Finally, we define the “jump time,”r, [4]. This corre- A Hamiltonian for this kind of continuous observation

sponds in a sense to the minimum time needed to make thill be provided in Sec. IV. For now we take a slightly
transition, analogous to the tunneling time for barrier transSimplified view and assume that theresmmeform of inter-
mission. The “sense” is that interruptiorias in the QZE at action that removes the system from the Hilbert space that is
intervals equal to or less tham disturb the decay. Less considered when the Hamiltonian is written as in Hg. Let

frequent interruptions do not. This quantity is given [y this removal (by an Observerhave a characteristic time
scalerq, and lety=1/75. Then we model the action of this

T% apparatus by adding-iy/2 to w. (This is justified in Sec.
= (6) IV.) Thus each state to whidt) can decay is itself unstable
L with decay ratey. Letting

We assume throughout that>0. If the second moment Q=w—iv/2 (11)
of H, ®'®, is infinite, the transient behavior may be differ-
ent from what appears in E) [6], and one may not obtain the Hamiltonian for continuous observation is
the QZE. 0 ot
In Table | is a list of the times used in this paper. Hz( )
® Q)

A. Pulsed interruptions We analyze the extent to which this additional interaction

If a measurement is madetat ot, then there is probabil- retards decay. We do not look at early transients, but rather
ity 1—(8t/77)? that the system is ifl). After N successive at the later exponential decay in the presence of the intense
measurements the probability of finding the system undeeontinuous observatiofLl2]. As confirmed numerically, for
cayed is large v the decay is severely suppressed. To evalu-
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ate the lifetime under observation we return(tioe discrete 1 ; ; , . !
form of) Eq. (3) and replacev by (). The “I"” that we now
obtain is an effective decay rate under continuous observe
tion. For largey this becomes

E—i L =T ! ® 12
2= o (12

This yieldsT'=4® ®/y. If 7ec=1/T is called the effective

lifetime for continuous observatiofvhen observing with re-

sponse timerg), then, from Eq(12),

In Prob of non-decay
|
N

]
w

2

7z
TECZR. (13) -4 7
Comparing our earli_er exprt_assion fogp (effective rate un- -5 ~ 5 = m = - = -
der pulsed observatignwe find that for the same suppres- time

sion of decay(i.e., 7ec=7=p) One should have

St=4r5. (14)
FIG. 1. Semilog plot of the probability of nondecay as a func-
The response time of the observer is thus shown to be relatdign of time, for N=17, ¢=0.2, h=0.1, E=5, andp=1. For 3

to a pulse time for an equivalent inhibition of decay. =t=42 the decay is to a good approximation exponential. Param-
eters for the Hamiltonian correspond to the quantities used in Egs.

Ill. NUMERICAL CONFIRMATION (15) and(16). The rise aftet~ 45 is a(partia) Poincarerecurrence.
Although our limit operations, such as deducing Eg).  formula here gives a rate of&®, |/ AE, wherek; is the
from Eq. (7), or Eqg.(10) from Eq. (9), are justified for suf- index for which wy, =h and AE is the level spacing i.
ficiently small imes(and providingr,>0), there is no guar-  The inverse of this quantity is about 9.66, in agreement with
antee that there is a significant time interval within whichihe measured lifetime.
this behavior can be seen. Nor does a comparisa@and Next we explore early transientss ;. In Fig. 2 we plot
Tepinsure that other features are the same. For these reasojg square rootof 1 minus the nondecay probability. If the
we check and extend the features seen analytically in Sec. lleading approximation to Eq4) is accurate, the initial be-
For reproducibility we give the details &f. It is conve-  havior should be a straight line of sloperi/ Fitting the
nient to change Eq(1) slightly. The band of energies is  interval[0,1] gives a slope of 0.205 while the inversemnfis
centered on zero, and a shift of the level from the center 0§ 2125(in satisfying agreementThe breakdown of this qua-

the band is provided by a parameter, Then dratic dependence on the scalemgfis also evident.
h @ Relation(14) connecting continuous and pulsed observa-
_ tion is only correct asymptotically for short pulses or intense
H o . (15
w
As found in Ref.[13], although exponential decay appears { I S L R R o0
ubiquitous in Nature, numerically it may be difficult to ex- Oooo°°
hibit. Following Ref.[13], we take oer 00’ 1
AL P LI b RV = )
v PRI e NN §odl _
(16)
&oaf o° 1
where N is an integer parametdiso thatH is (2N+2) i 2o
X (2N+2)], ¢ a coupling constan& the bandwidth, ang Foal OOO i
a parameter characterizing the band edges. o0
Figure 1 is a semilog plot of the probability of nondecay oal Oo° g
as a function of time, foN=17. Other parameters ae o°
=0.2, h=0.1, E=5, and p=1. After dropping to about PRI . . ; . . ; i ;
Pr(nondecay~0.012 fort~42, the system recovers, a reflec- oo T e e B s s s
tion of the (Qquantum Poincarerecurrence. From early times
this shows excellent exponential decay. FIG. 2. Plot of y—In[x(®%, with x(t) the amplitude for nonde-

Fitting the linear regime of the semilog plot gives  cay, forN=17,c=0.2,E=5, h=0.1, andp=1. For the quadratic
~9.38. From the giverb we compute the Zeno time to be approximation to Eq(4), the points should lie on a straight line,
7,~4.705. Combined with the lifetime, this gives a jump evidently not a bad approximation far<1.2. Note thatr;~2.4
time 7;~2.36. A discrete approximation to the golden rule gives the time scale for the transient era.
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TABLE Il. Matching hindrances. Values aft and vy that pro-
vide essentially the same effective lifetimes, and the proguitt
which by Eq.(14) should have the asymptotic value 4.

ot Tep y TeC Productysdt g
1.466 17.46 2.084 17.46 3.056 é
1.0 23.74 3.398 23.74 3.398 %
0.25 88.94 1543 88.94 3.857 g
0.05 442.78 77.86 442.76 3.893 [
observation. To see that limit approached, we report another =
numerical investigation. In Table Il we show results of sev- S
eral runs in each of which the continuous and pulsed obser- -8, - S, ,
vations were adjusted so that the degree of hindrance, spe-  ° % Goupling constant for the larger system °
cifically 7zc and 7gp, were the same. Note that although for
lesser degrees of hindrance relatidd) is not obeyed, the FIG. 3. Energy levels of system plus apparatus for continuous
product of y (=1/7o) and 8t approaches 4. observation, wittN="7, andM = 13. The coupling constent i [of

Eq.(17)]is Cn=0.1. Theenergy spread fow is 4, and that folV

is 12. The undecayed system has endrgy0.1. For®=0 the de-

IV. ANOTHER PERSPECTIVE: “OBSERVING” cay levels are the originalé”s (forming a quasicontinuumThese
VERSUS “DISTORTING” are plotted vertically on the far left. A® increases, they change,
and ultimately there remaino quasicontinuum levels for decay.

tain that hides th i d k tEor@ we use the parametrization in E3.6); in particular, there is
curtain that hides the measurement process and maxes Mg .\ qra|| factor ‘€,” which is our abscissa. Only those levels of

apparatus part Qf the quantum cglculanon. In Sec. Il the “de'the total Hamiltonian are plotted whose coupling to the original
tector” for continuous observation was represented by afeye| exceeds 20% of the original coupling.

additional piece of Hamiltonian-{iy/2) making the ‘y”

levels unstable. We now insert physical degrees of freedom We approach Eq18) in two ways. First, we replac® by
that lie behindy. This allows a second perspective on con-a continuum coupling and justify our replacementw@hby
tinuous observation. The inclusion of the apparatus changeg—i7/2 in Sec. Il. Second, we deal with E(L8) as a real
the quantum system. The halting of decay can then be dé&igenvalue equation and study its levels@increases.
scribed as modification of the Hamiltonian, stabilizing the
original system. This picture conforms to the name “domi-

In studying “continuous” observation, one pulls away the

A. Treating the apparatus as an effective damping

nated time evolution” advocated in Reff5], and is sup- We first evaluate® "(z—W) ~'@. With the assumption,
ported as well by Refl11]—especially its Fig. 3. This will to be self-consistently verified, that lzis small, this is
also allow us to estimate the transient period for a combined 1 p(W)|8(W)|2
decay system and measurement apparatus. of ®_>f dw ———
We enlarge our “universe” to include the continuous z-W z=W
measuring apparatus. The job of this instrument is to notice p(W)| 6(W)|2
when the system has decayedytoand to pull it away irre- :Pf dw —how ip(h)|6(h)|?,
versibly, with a time constant, . Instead of the Hamiltonian
given in Eq.(15), we use (29
h o o with p and # continuum quantitiegcf. Eq. (3)]. Substituting
in Eq. (18),
H=| ® o ©OT|, (17) 1
Cheddt
0 w Zoh= 0 T RETimp(mam 2

TheM additional level{W} represent the apparatus, and weWith AE the real principal value integral. Comparing this to
assume the coupling®” is strong. Also the levels are nu- EQ.(11), we identify y=2mp(h)|6(h)|*. Thus the effective

merous enough and so distributed that the transition induce@Pservation time used in Sec. Il is the decay or relaxation
by this coupling is effectively irreversible. rate for transfer of the system out of the states of interest for

We want the new, combined object, eigenvalue structurelhe decay of the original level. Also the self-consistency as-

The coupled equations analogous to Ej).are easily written sumption is justified. Inz is small, provided® (hencey) is

down, and with the substitution/dt—z (** z” is a possibly rge.
complex energy we find thatz must satisfy B. True eigenvalues in the presence
of the apparatus
z—h=a" ! d. (18) We return to Eq(18) with no continuum approximation,
7—w—0" 1 0 and diagonalize the fuH numerically. For Fig. 3 the form

z—W of O is the same as in Eq16), except that the maximum for
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each row of®" is centered on the corresponding diagonalnearly 3. Now let 5t=T/N and att=két project the evolv-
entry. Again using ‘t” for the overall coupling strength, we iNg wave function ong, . Then for sufficiently largeN, ¢
find that for smalk the quasicontinuum into which the origi- ~#n- (The usual QZE is the casé=¢o=y(0)Vk.) In

nal level decays remains intact and decay ocdiigt some this section we PrOduce the same result vmdm’.unuousob-
cases the exponential time evolution of the decay was alsdervation. Consider a two-level system, similar to that on

checked. However, ag increases the levels of interest move Which Rabi oscillation experimenf44] were done, first con-
away from the original level. Ultimately there is no con- firming the QZE. As a preliminary, the pulsed observation
tinuum, hence no decay. In the figure this occurscfer0.5.  result is established. _ _

Note that thetotal Hamiltonian continues to have levels LetH=puoy. A system started with spin-up has the un-
matching those of the system. However, most of these do néfisturbed evolution
substantially couple to the original level. For the plot in Fig.

3 only those levels were ys_ed for wh.ich there.was a cqupling w(t)zexp(—i,uaxt)( 1
of at least 20% of the original coupling, that is, the original 0
“®.” This substantially agrees with the results of Rif1]. , o

Using the Hamiltonian in Eqg(17) we can also examine L€t the family of states for projection be
the transients of the combined object, system plus apparatus.

We address the following question. The QZE. is .often be=exp —i 6o )(1> with gkzﬂ('
phrased as the observation of a decay system during its tran- ¥10 N
sient, quadratic decay. In our continuous formulation it is the (20
new exponential decay lifetime that we calcul#because
we contemplate long-term observatioBut one can still ask

about transients for the combined object. We now show thdf

they are substantially shortened.

An estimate of the duration of the quadratic regime is the Pe=| ) (& |:(
jump time, 75, given by 72/7_ [4]. Thus we evaluate—for K KAk
the combinedobject—the values of, and = . But this is
easy: 7, is unchanged, whiler, is what Sec. Il was con- Now allow the system to evolve for a tinfewith projections
cerned with, and in particular was denoteglin that section. ~ at timeskét (5t=T/N), and evolution undeH in between.
[Also, the calculation of Sec. Il was related in the presentThen
section to the full Hamiltonian of Eq17).] To see that, is
unchanged, recall5] that an alternative phrasing of; is
72=1Ky|(H—(y|H|¢))?|4). “ " is the initial undecayed
state, in our case a vector with 1 in the first entry, zeros
elsewhere. All that must be done is to et0 in Eq.(17), where 7 indicates the time-ordered product. We wish to
square the resulting object, and look at its 1-1 componentshow that forN—«, (T) is an eigenfunction of thénal
The answer isb'®, as in Eq.(5). It follows that the duration  projection operatorPy. Using P3=P,, Eq. (21) can be
of the quadratic decay regime scales like the lifetimes. rewritten

In Sec. VI we further comment on the perspective pre-
sented here. Viewing the QZE as a restructuring of the total
Hamiltonian results from including the “apparatus” in the W(T)=exp(—iaoy)T
Hamiltonian. The complaint that this kind of continuous ob-
servation isonly a matter of changing the system, not the . _ = -

“true” QZE, is in my view an artifact of the traditional but ;/.wth Bk; Po eXpl6)exp(-indto)exp(-if10y)Po. Let-
: ; ing s6=alN, it follows that
no longer tenable separation of the world into apparatus and

system. By=Po exp(i §00y)exp(—iudta)Pg,

cos ut
—isinput/’

DefiningPo=(3 9, the 2<2 projection operator at stage

cog 6y COS 6y Sin 6,
Cos 6 sin 6, sir? 6,

N 1
w(T>=T{H[Pkexrx—matao]}(o), (21
k=1

N
II By
k=1

E—

V. DYNAMIC CONTINUOUS OBSERVATION with =0, cos ¥,_,+ 0, sin 26,_,, a standard piece of
The name quantum Zeno effect suggests a relation to ZeS-U(.Z) manipulation. Th_e succeeding steps are similarly
, o " Straightforward and we find
no’'s paradox, and the name “watched pot effect” relates to
the ironic maxim that such pots do not boil. We now dem-
onstrate how the principle underlying the QZE darce the B,= po(
pot to boil. However, one could still call this the “QZE,” if
one imagined the tortoise on a train passing the sleeping
Achilles. Zeno’s nonmotion argument would then imply that +0
the train and the sleeper had no relative motion, so that
Achilles must be in motion. o
Let ¢ evolve with H; in the absence of observation, 10 order 1N, this is
Y(t) =exp(—iHt)¢¥(0). Let there be a family of statep, , k . .
=1,...N, such that¢,;=(0), and such that successive :(1_'&"‘ Sin 20— 0)
states differ little from one anothefi.e., [{ by 1| )| is k 0 0/

1—idtw sin 26,4 660—idtu cos B4
—80—idtu cosH_,  idtu sin 20, 0

1
W) . (23)

(24)
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(27)

Note thatO(1/N?) terms drop out in Eq(22). Therefore, N —i] 1
=lim7 exr{—H(—” ( )
=1 N N 0

1 N-= (=
0l

(29 By the Trotter product formula the summandstbfcan be

This is an eigenstate d?y. The only effect of the interac- Pulled apart, and we need only consider a product of terms
tion is a phase factor, and the pulsed monitoring with a time-
varying projection leaves the wave function in the twisted
state. Foma= 7 this yields a geometrical or Berry phasi],

and provides an explicit example of the work of Aharonov
and Anandar{16]. In this case the “dynamical” phasgn  We emphasize that one must take- beforee—0. Once
the first exponential of E¢(25)] is zero, while exptiacy) is  H has been defineffixing ¢), the time-ordered product and

lﬂ(T):eX[{ =i 'LZL—; (cos a—l)) exp(—iaay)

[P+ eQ;1™ exp(—iuay/N). (28)

just —1, and gives a geometrical phase other constructs merely constitute a way to integrate the dif-
ferential equation. The N” in Eq. (27) bears no relation to
Continuous observation the number of projections in the pulsed QIZ&. Eq. (20)].

As for the static QZE, there is no unique way to imple- Expression(28) can be written

ment continuous observation. We use a time-dependent
Hamiltonian, which for any particular value of the time—if
time stood still—would tend to select the stape given in

exp(—i IN).
Eq. (20). This is achieved by adding td M= TuordN)

1 0
exp—i6, ay)( 0 el/N) expli 0,0)

As before, the product can be regrouped and) has the

VIO=1In(P+eQ)  with «=tN and Q=1-Pi, (% 4id in Eq. (22), but with

The “€’ is mathematically necessary for the finitenessv/of
and we ultimately takee—0. It possesses atincomplete

analogy with the finiteness ofy,” the observer's rate con- By=
stant of Secs. Il and Ill. The total Hamiltonian is

1 0
0 &N ) expli 6,0y )exp(—iudto)exp(—if,_,0y)

o)

H=po+V(b). (26) Xlg e

Instead of Eq(21), we have
(V€N appears, since one no longer has a projedtiBe-

H(TY=Texp —i jTﬁ(t)dt (1) cause ofe one no longer obtains the simplification in going
0 0 from Eq. (23) to Eq. (24). Instead,

B =

1—idtu sin26;_, YN[ s0—istu cos X;_,] 1
, o| 2 /-

61/2N[_ 50—|5I,LL cos 29j71] el/N[l+i5t,u sin 201'71]

We next require the product of thé B;s. To do this we use was soon realized that the same phenomenon could take the
a spectral decomposition. Consider the calculatiorBgé  form of continuous and even time-varying observations.
eigenvalues. The off-diagonal terms Bf enter only as the Here we have presented a precise connection between the
product of each other; this ©(1/N?) and drops out foN  pulsing time for intermittent observation and the response
—oo. Similarly, the eigenvectors differ frongY and €) by  time for continuous observation. One asks, how can an atom
terms of the same negligible ordgMote thatB;_;—B; decay if | look at it? The answer is that the response time of
=0O(1/N?).] Therefore, for this limitB; can be replaced by your eye(or whatevey is far longer than the times needed to
its diagonal. The product now gives a term proportiona to stop that decay via the intermittent QZHhat time is the
in the_ 2-2 position, which drops_ out far—0. We are then  “jump time” of Ref. [4].) This also explains why observa-
left with exactly what appears in Eq25). We have thus tjons of quantum jumpgLO] did not seriously affect the life-
shown that the effect of a dynamic set of projections—jme.
makingthe pot boil—can be implemented with continuous | establishing this result the apparatus was treated as a
observation. quantum system. This allowed an alternative view of the
VI. DISCUSSION QZE, in which the observer’s halting of .decay can be
phrased as the system-cum-apparatus ceasing to be unstable.
Although early formulations of the so-called quantum This may obscure the issue of whether a given observational
Zeno effect were phrased in terms of repetitive projections, ischeme is or is not an example of the QZE. However, this is
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a matter of semantics and has no effect on the behavior of theresent a continuous observation scheme to accomplish the
physical systems. In fact, to allay confusion it would be bet-same result.
ter to call the QZE “dominated time evolution,” as advo-
cated in Ref[5].

Another reason to prefer the foregoing natmeless you ACKNOWLEDGMENTS
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