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Continuous and pulsed observations in the quantum Zeno effect

L. S. Schulman
Physics Department, Clarkson University, Potsdam, New York 13699-5820

~Received 19 May 1997; revised manuscript received 31 October 1997!

The usual formulation of the quantum Zeno effect~QZE! uses a sequence of rapid observations to prevent
change. The same effect can be achieved with continuous observation. For partial inhibition of change we
provide a quantitative relation between pulsed~at intervalsdt! and continuous~with response timetO! obser-
vations: the slowdown is the same fordt54tO . Including the continuous observer in the Hamiltonian gives an
alternative view of the QZE, showing the appropriateness of the name ‘‘dominated time evolution.’’ Finally,
the variation on the QZE in which a nonconstant sequence of projections canforcechange is also shown to be
achievable by time-varying continuous observation.@S1050-2947~98!01303-1#

PACS number~s!: 03.65.Bz, 42.50.Lc.
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I. INTRODUCTION

The usual formulation of the so-called quantum Zeno
fect ~QZE! is the inhibition of decay due to frequent, inte
mittent observation. An early question was the issue ofcon-
tinuous observation. Many decays let their existence
known rapidly without official monitoring. Ana particle
from a nuclear decay creates a track, thereby constitutin
‘‘measurement.’’ Or an atom decays and sensitive detec
irreversibly note the emitted photon. How can these dec
have taken place?

In this paper we make the point that continuous obser
tion is an idealized concept, and any particular form it tak
will have a characteristic time scale. When the scale is
than that for slowing the decay, were one to pulse obse
tions at that frequency, then the ‘‘continuous observatio
would hinder the decay. If the time scale is longer, then
would not. There have been investigations of the continu
versus pulsed problem, for example Refs.@1,2#, where other
works are quoted. Our emphasis in the present paper i
having a more realistic model of the continuous observat
Moreover, the connection we do make has a quantita
formulation, specifically:Let the time between pulsed obse
vations bedt, and let the time scale (defined below) for t
continuous observation betO . Then asdt→0, the two forms
of interference with the decay provide equal degrees of h
drance ifdt54tO .

Thus pulsing is inessential, as already suggested by
characterization, ‘‘watched pot effect’’@2#. In any case, to
see significant hindrance of the decay, either of the cha
teristic times must be below a time scale called the ‘‘jum
time’’ @3,4#. This will be established both analytically an
numerically.

In Sec. II we calculate decay rates under various circu
stances. Unmonitored and pulsed-observation decay rate
straightforward. For continuous observation a particular fo
of observation is given and a modified decay rate compu
In Sec. III the conclusions of Sec. II are checked nume
cally. Following that, another line of inquiry is pursued: b
571050-2947/98/57~3!/1509~7!/$15.00
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the incorporation of continuous observation in the quant
Hamiltonian one dispenses with the black magic of ‘‘qua
tum measurement’’ and develops an alternative perspec
on the inhibition of decay. With this view it is not so muc
that one watches the pot, but that the combined system
observer no longer can boil. Section V takes up a dynam
version of the QZE in which the state on which the ‘‘me
surement’’ projects varies in time, forcing the system
change. For this too we provide a continuous version.

II. MONITORED DECAY

The system is an atom in an excited state~u1&!, able to
decay to the ground state~u0&! by emitting photons. The
Hamiltonian is

H5ṽ0u1&^1u1(
k

ṽkak
†ak

1(
k

@ak
†Fku0&^1u1akFk* u1&^0u#.

The atom’s ground-state energy is zero, andu1& has energy
ṽ0 , falling in the band$ṽk% associated with the photons
~Although I speak of an ‘‘atom’’ and ‘‘photons,’’ the formal
ism is more general.! It is convenient to use matrix notation
and by subtractingṽ0 from the diagonal~and definingvk
[v̄k2ṽ0! we have

H5S 0 F†

F v
D and c5S x

yD , ~1!

whereF and y are column vectors of the same dimensio
andv is a diagonal matrix. The Schro¨dinger equation~with
\51! becomes

i ẋ5F†y, i ẏ5vy1Fx. ~2!
1509 © 1998 The American Physical Society



t

e

-

t
ns

s

t
r-

de

.

e

he
erval

, so
rva-
ay
be

As
dy-

on
ate
,

d
ea-

b-
er-
of

the

e.
ing

n
y

t is

s

e

on
ther
nse

lu-

ns

.

1510 57L. S. SCHULMAN
One generally derives decay rates from Eq.~2! by using the
Laplace transform. A quick way to reproduce that result is
assume time dependence exp@2i(E2iG/2)t# for both x and
y. One obtains

E2 i
G

2
5F†

1

E2v2 iG/2
F→E dv

r~v!uf~v!u2

E2v2 iG/2
,

~3!

where the arrow indicates a continuum limit,r is the density
of states, andf the appropriate limit ofF. The usual ma-
nipulations now giveG52pr(0)uf(0)u2, the Fermi-Dirac
golden rule. LettL[1/G, the decay lifetime. We want th
short-time transient behavior, and return to Eq.~2!. The ini-
tial conditions arex(0)51 andy(0)50. We generate suc
cessive time-zero derivatives ofx,

Dx~0!50, D2x~0!5F†F, D3x~0!5 iF†vF,

D4x~0!5F†~v21FF†!F,

with D[d/dt. A power-series expansion forx(t) then gives

ux~ t !u2512~ t2/tZ
2!1O~ t4! ~4!

wheretZ , the Zeno time@5#, is given by

tZ[1/AF†F. ~5!

Finally, we define the ‘‘jump time,’’tJ @4#. This corre-
sponds in a sense to the minimum time needed to make
transition, analogous to the tunneling time for barrier tra
mission. The ‘‘sense’’ is that interruptions~as in the QZE! at
intervals equal to or less thantJ disturb the decay. Les
frequent interruptions do not. This quantity is given by@4#

tJ5
tZ

2

tL
. ~6!

We assume throughout thattZ.0. If the second momen
of H, F†F, is infinite, the transient behavior may be diffe
ent from what appears in Eq.~4! @6#, and one may not obtain
the QZE.

In Table I is a list of the times used in this paper.

A. Pulsed interruptions

If a measurement is made att5dt, then there is probabil-
ity 12(dt/tZ)2 that the system is inu1&. After N successive
measurements the probability of finding the system un
cayed is

TABLE I. Times defined.

tL: Lifetime—ordinary
tZ: Zeno time
tJ: Jump time
dt: Time interval for pulsed measurements
tEP: Effective lifetime when subject to pulsed observatio
tO: Response time of observer’s apparatus
tEC: Effective lifetime when being observed continuously
o

he
-

-

PrT
~N!~nondecay!5@12~dt !2/tZ

2#N, ~7!

with T5Ndt. For fixedT and largeN, this gives

PrT
~N!~nondecay!5exp~2T2/NtZ

2!, ~8!

which goes to unity forN→`. This is the standard QZE
Consider, however, finiteN, or finite dt. If the leading ap-
proximation in Eq.~4! holds, then we obtain an effectiv
decay rate by setting

12~dt !2/tZ
2'exp~2dt/tEP!. ~9!

In this way we have an effective lifetime, extended by t
pulsed measurements and dependent on the pulsing int
dt, whose value@from Eq. ~9!# is

tEP5tZ
2/dt. ~10!

B. Continuous observation

The forms taken by continuous observation are many
that specific conclusions depend on the model of obse
tion. Moreover, traditional thinking about measurement m
further hinder discussion, since ‘‘measurement’’ may
viewed as a trauma. Our approach, consistent with Refs.@7–
9#, is that there is no evolution but quantum evolution.
such it makes sense to consider the combined quantum
namics of system and apparatus.

One way to monitor the decay is to have a laser shine
the atom at the frequency of a transition from its ground st
to someother state, one with a short lifetime. In this way
‘‘as soon as’’ the decay~u1&→u0&! occurs, the atom is yanke
to the other state whose irreversible decay provides the m
surement. This is the way that ‘‘quantum jumps’’ were o
served@10#, and the present paper explains why those obs
vations did not stop the decay. This is also the framework
Ref. @11#, where stronger fields are contemplated and
decay can be stopped. Alternatively,u0& might not be the
ground state, but is itself metastable with a short lifetim
Yet another possibility is a nearby and rapidly respond
counter sensitive to the emitted photon.

A Hamiltonian for this kind of continuous observatio
will be provided in Sec. IV. For now we take a slightl
simplified view and assume that there issomeform of inter-
action that removes the system from the Hilbert space tha
considered when the Hamiltonian is written as in Eq.~1!. Let
this removal ~by an Observer! have a characteristic time
scaletO , and letg[1/tO . Then we model the action of thi
apparatus by adding2 ig/2 to v. ~This is justified in Sec.
IV.! Thus each state to whichu1& can decay is itself unstabl
with decay rateg. Letting

V[v2 ig/2, ~11!

the Hamiltonian for continuous observation is

H5S 0 F†

F V
D .

We analyze the extent to which this additional interacti
retards decay. We do not look at early transients, but ra
at the later exponential decay in the presence of the inte
continuous observation@12#. As confirmed numerically, for
large g the decay is severely suppressed. To eva
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57 1511CONTINUOUS AND PULSED OBSERVATIONS IN THE . . .
ate the lifetime under observation we return to~the discrete
form of! Eq. ~3! and replacev by V. The ‘‘G’’ that we now
obtain is an effective decay rate under continuous obse
tion. For largeg this becomes

E2 i
G

2
5F†

1

ig/2
F. ~12!

This yieldsG54F†F/g. If tEC[1/G is called the effective
lifetime for continuous observation~when observing with re-
sponse timetO!, then, from Eq.~12!,

tEC5
tZ

2

4tO
. ~13!

Comparing our earlier expression fortEP ~effective rate un-
der pulsed observation!, we find that for the same suppre
sion of decay~i.e., tEC5tEP! one should have

dt54tO . ~14!

The response time of the observer is thus shown to be rel
to a pulse time for an equivalent inhibition of decay.

III. NUMERICAL CONFIRMATION

Although our limit operations, such as deducing Eq.~8!
from Eq. ~7!, or Eq. ~10! from Eq. ~9!, are justified for suf-
ficiently small times~and providingtZ.0!, there is no guar-
antee that there is a significant time interval within whi
this behavior can be seen. Nor does a comparison oftEC and
tEP insure that other features are the same. For these rea
we check and extend the features seen analytically in Se

For reproducibility we give the details ofH. It is conve-
nient to change Eq.~1! slightly. The band of energiesv is
centered on zero, and a shift of the level from the cente
the band is provided by a parameter,h. Then

H5S h F†

F v
D . ~15!

As found in Ref.@13#, although exponential decay appea
ubiquitous in Nature, numerically it may be difficult to ex
hibit. Following Ref.@13#, we take

vk5
kE

2N11
, Fk5

c

AN
F12S k

N11D 2G p

, k52N,...,N,

~16!

where N is an integer parameter@so that H is (2N12)
3(2N12)#, c a coupling constant,E the bandwidth, andp
a parameter characterizing the band edges.

Figure 1 is a semilog plot of the probability of nondec
as a function of time, forN517. Other parameters arec
50.2, h50.1, E55, and p51. After dropping to about
Pr~nondecay!'0.012 fort'42, the system recovers, a refle
tion of the~quantum! Poincare´ recurrence. From early time
this shows excellent exponential decay.

Fitting the linear regime of the semilog plot givestL
'9.38. From the givenF we compute the Zeno time to b
tZ'4.705. Combined with the lifetime, this gives a jum
time tJ'2.36. A discrete approximation to the golden ru
a-

ed

ons
II.

f

formula here gives a rate of 2puFkh
u2/DE, wherekh is the

index for whichvkh
5h and DE is the level spacing inH.

The inverse of this quantity is about 9.66, in agreement with
the measured lifetime.

Next we explore early transients,t&tJ . In Fig. 2 we plot
the square rootof 1 minus the nondecay probability. If the
leading approximation to Eq.~4! is accurate, the initial be-
havior should be a straight line of slope 1/tZ . Fitting the
interval@0,1# gives a slope of 0.205 while the inverse oftZ is
0.2125~in satisfying agreement!. The breakdown of this qua-
dratic dependence on the scale oftJ is also evident.

Relation~14! connecting continuous and pulsed observa-
tion is only correct asymptotically for short pulses or intense

FIG. 1. Semilog plot of the probability of nondecay as a func-
tion of time, for N517, c50.2, h50.1, E55, and p51. For 3
&t&42 the decay is to a good approximation exponential. Param-
eters for the Hamiltonian correspond to the quantities used in Eqs.
~15! and~16!. The rise aftert;45 is a~partial! Poincare´ recurrence.

FIG. 2. Plot ofA2 lnux(t)u2, with x(t) the amplitude for nonde-
cay, forN517, c50.2, E55, h50.1, andp51. For the quadratic
approximation to Eq.~4!, the points should lie on a straight line,
evidently not a bad approximation fort&1.2. Note thattJ'2.4
gives the time scale for the transient era.
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1512 57L. S. SCHULMAN
observation. To see that limit approached, we report ano
numerical investigation. In Table II we show results of se
eral runs in each of which the continuous and pulsed ob
vations were adjusted so that the degree of hindrance,
cifically tEC andtEP, were the same. Note that although f
lesser degrees of hindrance relation~14! is not obeyed, the
product ofg (51/tO) anddt approaches 4.

IV. ANOTHER PERSPECTIVE: ‘‘OBSERVING’’
VERSUS ‘‘DISTORTING’’

In studying ‘‘continuous’’ observation, one pulls away th
curtain that hides the measurement process and make
apparatus part of the quantum calculation. In Sec. II the ‘‘
tector’’ for continuous observation was represented by
additional piece of Hamiltonian (2 ig/2) making the ‘‘y’’
levels unstable. We now insert physical degrees of freed
that lie behindg. This allows a second perspective on co
tinuous observation. The inclusion of the apparatus chan
the quantum system. The halting of decay can then be
scribed as modification of the Hamiltonian, stabilizing t
original system. This picture conforms to the name ‘‘dom
nated time evolution’’ advocated in Ref.@5#, and is sup-
ported as well by Ref.@11#—especially its Fig. 3. This will
also allow us to estimate the transient period for a combi
decay system and measurement apparatus.

We enlarge our ‘‘universe’’ to include the continuou
measuring apparatus. The job of this instrument is to no
when the system has decayed toy, and to pull it away irre-
versibly, with a time constanttO . Instead of the Hamiltonian
given in Eq.~15!, we use

H5S h F† 0

F v Q†

0 Q W
D . ~17!

TheM additional levels$W% represent the apparatus, and w
assume the coupling ‘‘Q’’ is strong. Also the levels are nu
merous enough and so distributed that the transition indu
by this coupling is effectively irreversible.

We want the new, combined object, eigenvalue structu
The coupled equations analogous to Eq.~2! are easily written
down, and with the substitutioni ]/]t→z ~‘‘ z’’ is a possibly
complex energy!, we find thatz must satisfy

z2h5F†
1

z2v2Q†
1

z2W
Q

F. ~18!

TABLE II. Matching hindrances. Values ofdt andg that pro-
vide essentially the same effective lifetimes, and the productgdt,
which by Eq.~14! should have the asymptotic value 4.

dt tEP g tEC Productgdt

1.466 17.46 2.084 17.46 3.056
1.0 23.74 3.398 23.74 3.398
0.25 88.94 15.43 88.94 3.857
0.05 442.78 77.86 442.76 3.893
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We approach Eq.~18! in two ways. First, we replaceQ by
a continuum coupling and justify our replacement ofv by
v2 ig/2 in Sec. II. Second, we deal with Eq.~18! as a real
eigenvalue equation and study its levels asuQu increases.

A. Treating the apparatus as an effective damping

We first evaluateQ†(z2W)21Q. With the assumption,
to be self-consistently verified, that Imz is small, this is

Q†
1

z2W
Q→E dW

r~W!uu~W!u2

z2W

.PE dW
r~W!uu~W!u2

h2W
2 ipr~h!uu~h!u2,

~19!

with r andu continuum quantities@cf. Eq. ~3!#. Substituting
in Eq. ~18!,

z2h5F†
1

z2v2DE1 ipr~h!uu~h!u2
F,

with DE the real principal value integral. Comparing this
Eq. ~11!, we identifyg52pr(h)uu(h)u2. Thus the effective
observation time used in Sec. II is the decay or relaxat
rate for transfer of the system out of the states of interest
the decay of the original level. Also the self-consistency
sumption is justified. Imz is small, providedQ ~henceg! is
large.

B. True eigenvalues in the presence
of the apparatus

We return to Eq.~18! with no continuum approximation
and diagonalize the fullH numerically. For Fig. 3 the form
of Q is the same as in Eq.~16!, except that the maximum fo

FIG. 3. Energy levels of system plus apparatus for continu
observation, withN57, andM513. The coupling constent inF @of
Eq. ~17!# is Cn50.1. Theenergy spread forv is 4, and that forW
is 12. The undecayed system has energyh50.1. ForQ50 the de-
cay levels are the original ‘‘v’’s ~forming a quasicontinuum!. These
are plotted vertically on the far left. AsQ increases, they change
and ultimately there remainno quasicontinuum levels for decay
For Q we use the parametrization in Eq.~16!; in particular, there is
an overall factor ‘‘c, ’’ which is our abscissa. Only those levels o
the total Hamiltonian are plotted whose coupling to the origin
level exceeds 20% of the original coupling.
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57 1513CONTINUOUS AND PULSED OBSERVATIONS IN THE . . .
each row ofQ† is centered on the corresponding diagon
entry. Again using ‘‘c’’ for the overall coupling strength, we
find that for smallc the quasicontinuum into which the orig
nal level decays remains intact and decay occurs.~For some
cases the exponential time evolution of the decay was
checked.! However, asc increases the levels of interest mo
away from the original level. Ultimately there is no co
tinuum, hence no decay. In the figure this occurs forc *0.5.
Note that thetotal Hamiltonian continues to have leve
matching those of the system. However, most of these do
substantially couple to the original level. For the plot in F
3 only those levels were used for which there was a coup
of at least 20% of the original coupling, that is, the origin
‘‘ F.’’ This substantially agrees with the results of Ref.@11#.

Using the Hamiltonian in Eq.~17! we can also examine
the transients of the combined object, system plus appar
We address the following question. The QZE is oft
phrased as the observation of a decay system during its
sient, quadratic decay. In our continuous formulation it is
new exponential decay lifetime that we calculate~because
we contemplate long-term observation!. But one can still ask
about transients for the combined object. We now show
they are substantially shortened.

An estimate of the duration of the quadratic regime is
jump time, tJ , given by tZ

2/tL @4#. Thus we evaluate—for
the combinedobject—the values oftZ and tL . But this is
easy:tZ is unchanged, whiletL is what Sec. II was con-
cerned with, and in particular was denotedtO in that section.
@Also, the calculation of Sec. II was related in the pres
section to the full Hamiltonian of Eq.~17!.# To see thattZ is
unchanged, recall@5# that an alternative phrasing oftZ is
tZ

251/̂ cu(H2^cuHuc&)2uc&. ‘‘ c’’ is the initial undecayed
state, in our case a vector with 1 in the first entry, ze
elsewhere. All that must be done is to seth50 in Eq. ~17!,
square the resulting object, and look at its 1-1 compon
The answer isF†F, as in Eq.~5!. It follows that the duration
of the quadratic decay regime scales like the lifetimes.

In Sec. VI we further comment on the perspective p
sented here. Viewing the QZE as a restructuring of the t
Hamiltonian results from including the ‘‘apparatus’’ in th
Hamiltonian. The complaint that this kind of continuous o
servation isonly a matter of changing the system, not t
‘‘true’’ QZE, is in my view an artifact of the traditional bu
no longer tenable separation of the world into apparatus
system.

V. DYNAMIC CONTINUOUS OBSERVATION

The name quantum Zeno effect suggests a relation to
no’s paradox, and the name ‘‘watched pot effect’’ relates
the ironic maxim that such pots do not boil. We now de
onstrate how the principle underlying the QZE canforce the
pot to boil. However, one could still call this the ‘‘QZE,’’ if
one imagined the tortoise on a train passing the sleep
Achilles. Zeno’s nonmotion argument would then imply th
the train and the sleeper had no relative motion, so
Achilles must be in motion.

Let c evolve with H; in the absence of observation
c(t)5exp(2iHt)c(0). Let there be a family of statesfk , k
51,...,N, such thatf15c(0), and such that successiv
states differ little from one another~i.e., u^fk11ufk&u is
l

so

ot
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nearly 1!. Now let dt5T/N and att5kdt project the evolv-
ing wave function onfk . Then for sufficiently largeN,cT
'fN . ~The usual QZE is the casefk5f05c(0);k.! In
this section we produce the same result withcontinuousob-
servation. Consider a two-level system, similar to that
which Rabi oscillation experiments@14# were done, first con-
firming the QZE. As a preliminary, the pulsed observati
result is established.

Let H5msx . A system started with spin-up has the u
disturbed evolution

c~ t !5exp~2 imsxt !S 1
0D5S cosmt

2 i sin mt D .

Let the family of states for projection be

fk[exp~2 iuksy!S 1
0D with uk[

ak

N
, k51,...,N.

~20!

DefiningP0[(0
1

0
0), the 232 projection operator at stagek

is

Pk5ufk&^fku5S cos2 uk cosuk sin uk

cosuk sin uk sin2 uk
D .

Now allow the system to evolve for a timeT with projections
at timeskdt (dt5T/N), and evolution underH in between.
Then

c~T!5T F )
k51

N

@Pkexp~2 imdtsx!#G S 1
0D , ~21!

where T indicates the time-ordered product. We wish
show that forN→`, c(T) is an eigenfunction of thefinal
projection operator,PN . Using P0

25P0 , Eq. ~21! can be
rewritten

c~T!5exp~2 iasy!T F )
k51

N

BkG S 1
0D , ~22!

with Bk[P0 exp(iuksy)exp(2imd tsx)exp(2iuk21sy)P0. Let-
ting du[a/N, it follows that

Bk5P0 exp~ idusy!exp~2 imdts̃ !P0 ,

with s̃5sx cos 2uk211sz sin 2uk21 , a standard piece o
SU~2! manipulation. The succeeding steps are simila
straightforward and we find

Bk5P0S 12 idtm sin 2uk21 du2 idtm cos 2uk21

2du2 idtm cos 2uk21 idtm sin 2uk21
D P0

1OS 1

N2D . ~23!

To order 1/N, this is

Bk5S 12 idtm sin 2uk21 0

0 0D . ~24!
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1514 57L. S. SCHULMAN
Note thatO(1/N2) terms drop out in Eq.~22!. Therefore,

c~T!5expS 2 i
mT

2a
~cos 2a21! Dexp~2 iasy!S 1

0D .

~25!

This is an eigenstate ofPN . The only effect of the interac
tion is a phase factor, and the pulsed monitoring with a tim
varying projection leaves the wave function in the twist
state. Fora5p this yields a geometrical or Berry phase@15#,
and provides an explicit example of the work of Aharon
and Anandan@16#. In this case the ‘‘dynamical’’ phase@in
the first exponential of Eq.~25!# is zero, while exp(2iasy) is
just 21, and gives a geometrical phasep.

Continuous observation

As for the static QZE, there is no unique way to impl
ment continuous observation. We use a time-depend
Hamiltonian, which for any particular value of the time—
time stood still—would tend to select the statefk given in
Eq. ~20!. This is achieved by adding toH

V~ t ![ i ln~Pk1eQk! with k5tN and Qk512Pk ,

The ‘‘e’’ is mathematically necessary for the finiteness ofV,
and we ultimately takee→0. It possesses an~incomplete!
analogy with the finiteness of ‘‘g,’’ the observer’s rate con-
stant of Secs. II and III. The total Hamiltonian is

H̃5msx1V~ t !. ~26!

Instead of Eq.~21!, we have

c~T!5T expS 2 i E
0

T

H̃~ t !dtD S 1
0D
o

—
us

m
s,
-

nt

5 lim
N2`

T H )
j 51

N

expF2 i

N
H̃S j

ND G J S 1
0D . ~27!

By the Trotter product formula the summands ofH̃ can be
pulled apart, and we need only consider a product of ter

@Pj1eQj #
1/N exp~2 imsx /N!. ~28!

We emphasize that one must takeN→` beforee→0. Once
H̃ has been defined~fixing e!, the time-ordered product an
other constructs merely constitute a way to integrate the
ferential equation. The ‘‘N’’ in Eq. ~27! bears no relation to
the number of projections in the pulsed QZE@cf. Eq. ~20!#.
Expression~28! can be written

Fexp~2 iu jsy!S 1 0

0 e1/ND exp~ iu jsy!Gexp~2 imsx /N!.

As before, the product can be regrouped andc(T) has the
form it did in Eq. ~22!, but with

Bj[S1 0

0 e1/2ND exp~iujsy!exp~2imdtsx!exp~2iuj21sy!

3S1 0

0 e1/2ND .

~Ae1/N appears, since one no longer has a projection.! Be-
cause ofe one no longer obtains the simplification in goin
from Eq. ~23! to Eq. ~24!. Instead,
Bj5S 12 idtm sin 2u j 21 e1/2N@du2 idtm cos 2u j 21#

e1/2N@2du2 idtm cos 2u j 21# e1/N@11 idtm sin 2u j 21#
D 1OS 1

N2D .
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We next require the product of theN Bjs. To do this we use
a spectral decomposition. Consider the calculation ofBj ’s
eigenvalues. The off-diagonal terms ofBj enter only as the
product of each other; this isO(1/N2) and drops out forN
→`. Similarly, the eigenvectors differ from (0

1) and (1
0) by

terms of the same negligible order.@Note that Bj 212Bj
5O(1/N2).# Therefore, for this limit,Bj can be replaced by
its diagonal. The product now gives a term proportional te
in the 2-2 position, which drops out fore→0. We are then
left with exactly what appears in Eq.~25!. We have thus
shown that the effect of a dynamic set of projections
making the pot boil—can be implemented with continuo
observation.

VI. DISCUSSION

Although early formulations of the so-called quantu
Zeno effect were phrased in terms of repetitive projection
 it

was soon realized that the same phenomenon could take
form of continuous and even time-varying observatio
Here we have presented a precise connection between
pulsing time for intermittent observation and the respon
time for continuous observation. One asks, how can an a
decay if I look at it? The answer is that the response time
your eye~or whatever! is far longer than the times needed
stop that decay via the intermittent QZE.~That time is the
‘‘jump time’’ of Ref. @4#.! This also explains why observa
tions of quantum jumps@10# did not seriously affect the life-
time.

In establishing this result the apparatus was treated
quantum system. This allowed an alternative view of t
QZE, in which the observer’s halting of decay can
phrased as the system-cum-apparatus ceasing to be uns
This may obscure the issue of whether a given observatio
scheme is or is not an example of the QZE. However, thi
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a matter of semantics and has no effect on the behavior o
physical systems. In fact, to allay confusion it would be b
ter to call the QZE ‘‘dominated time evolution,’’ as advo
cated in Ref.@5#.

Another reason to prefer the foregoing name~unless you
want to put the tortoise on a train, as in Sec. V! is the fact
that halting change is only one manifestation of the effe
By varying the projections, it has long been known that
system may be forced to change. In the present paper we
h

nt
he
-

t.
e
lso

present a continuous observation scheme to accomplish
same result.
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