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Metastability in the Ising model is studied in two ways. In a dynamical 
Monte Carlo model, metastable magnetization and lifetime are measured 
for various magnetic fields and low temperatures. Following up a proposed 
relation between analytic continuation of transfer matrix eigenvalues and 
metastability, transfer matrix eigenvalues are studied. We examine the 
extent to which these approaches agree. The Monte Carlo data also provide 
quantitative support for the critical droplet model for decay. 
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model. 

1. I N T R O D U C T I O N  

There was recently proposed a relation between certain eigenvalues of the 
transfer matrix for the two-dimensional Ising model and metastability in that 
system& ~ Another  approach to metastability is through a dynamical lsing 
model, using Monte Carlo techniques& -5~ We here present numerical calcula- 
tions from both points of  view, which show that the transfer matrix and 
Monte Carlo work address the same phenomenon. This supports the thesis of  
Ref. 1, namely the relevance of  the transfer matrix to metastability. The 
structure of  the transfer matrix eigenvalues, however, is more complicated 
than envisaged there and suggests that the first-order phase transition causes 
an essential singularity in the free energy (agreeing with other studies~6-9~). 

Besides results concerning the transfer matrix, our systematic study of 
Monte Carlo decay times and magnetization at low temperatures T and 
" sma l l "  systems appears to be new. We find that the formula 

F ~ (volume) x exp(-~b/T) (1) 

describes a wide range of decay rates, where for low T, ,~ is close to the energy 
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cost for certain stable state clusters in the metastable background, providing 
evidence for the role of  critical droplets in decay. 

We also find agreement, for small external field H, between the mag- 
netization of the metastable state as predicted by (a) the transfer matrix, 
(b) the first few terms of the low-temperature expansion (z~ (used outside its 
region of known convergence), and (c) the dynamical Ising model (i.e., 
Monte Carlo results). 

In Section 2 we discuss our work on the transfer matrix. The Monte 
Carlo results are presented in Section 3. Section 4 deals with some of the 
relations between these. Conclusions and remarks are presented in Section 5. 

2. THE  T R A N S F E R  M A T R I X  A P P R O A C H  TO 
M ETASTA B I LITY 

2.1. Nota t ion  and Rev iew of the Model  

According to Ref. 1, the metastable free energy is derived from the 
transfer matrix eigenvalue of largest " w r o n g "  magnetization. We consider a 
periodic N x oo lattice with Ising free energy 

E = - J  ~ aa - H ~  cr 
neo,  r e s t  

neighbor 

where H is the external magnetic field and the spins o = + 1. The interaction 
coefficient J will be taken equal to 1. 

The associated 2 N x 2 N symmetric transfer matrix L is defined as follows. 
For two column configurations Its} = (~1 ..... aN) and I/x'} = ( ~  . . . .  , ~ ' )  

<t~lL]/) -- exp ~ (a,a,+l + ~,'~;+1) + ~. h (cri + (h') + v a~ai' 
" =  i=i i=l 

(2) 

where v = J/T and h = H/T. Let A} N> be the jth eigenvalue of L (Ao > AI > 
A 2 > ...) and define the free energy associated with that eigenstate to be 

F} u> = - ( T / N )  log A} m (3) 

With this definition limu~ ~ Fg m is the usual free energy. The magnetization 
m is the derivative of  the free energy with respect to - H .  In Ref. 1 it was 
proposed that the metastable free energy is limN~ ~ F~ N> for that eigenstate j 
with the largest magnetization opposite in direction to the magnetic field. 

We have diagonalized the transfer matrix for N = 5, 7, 9, 11 for various 
values of  H and T. In Fig. 1 the N = 7 free energy levels are shown for T = 1 
(in our units Tc = 2.269...). We assume a magnetic field in the negative 
direction. The stable state has a magnetization of approximately -1  and the 
metastable state a magnetization near + 1. These states are found to be 
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Fig. 1. Plot of (free energy)/T = - log(eigenvalue)/N for 27 x 27 transfer matrix for 
various eigenstates as a function of H for T = 1. Crossings are not accurately depicted. 

almost purely composed of the vectors ( . . . . . . .  ) and ( +  + ... + + ), respec- 
tively. The other states can be similarly identified by their magnetization. 
In Fig. 1 only 20 energy levels are shown (rather than U) because only 
translationally invariant states mix with the metastable state. 2 We have 
constructed the 20 translationally invariant states [there are 2 + (2 N - 2)IN 
such states for N prime] and diagonalized the restricted 20 x 20 transfer 
matrix to get our numerical results. 

We introduce the following notation: 

[0) = ( + + . . . + )  all Nsp ins  -- +1 (4) 

This is the T--> 0 eigenfunction with the T--> 0 metastable state. Let 

Ix1> = ( + +  ... + . . . . . .  + + ... + )  (5) 

2 Because L and the boundary conditions are translationally invariant and because 
variation of h can be considered a translationally invariant perturbation, the space of 
translationally invariant states will remain the same for all h. Since the stable ground 
state is translationally invariant, the metastable state, gotten by analytic continuation, 
shares this property. The translationaIly invariant space can be conveniently con- 
structed by taking a basis and applying the operator B = ~'= 1 A j (where A is a transla- 
tion operator) to all states and normalizing appropriately. The dimension of the 
translationaUy invariant subspace is computed by considering the number of basis 
vectors projected onto the same state by B. 
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For this state there are l consecutive ( - )  spins, beginning at position x. 

10*> = [the normalized translationally invariant 
state associated with 10>] 

= [07 (6) 

]/*> ~ [the normalized translationally invariant 
state associated with any [xl>, x = 1 .... , N] 

= (1/~/N)[II/> + [2l> -4-.-.-t- INI>] (7) 

The translationally invariant states are similarly defined for the other states. 
We write ]~*> as the translationally invariant state associated with Its). 
Away from the crossing regions most eigenvectors are composed predomi- 
nantly of one such [~*>. 

2.2. Numerical Results 

F o r  the  purpose  o f  es tabl ishing the re levance of  t ransfer  mat r ix  eigen- 
values to  p roper t ies  o f  the  metas tab le  state, the first satisfying feature  to 
emerge  f rom our  numer ica l  work  is tha t  as N varies,  the  metas table  free 
energy changes litt le (cf. Table  I). A l t h o u g h  the label  o f  the metas tab le  level 
may  change with N, there is always an eigenvector  with the app rop r i a t e  

eigenvalue.  This suggests tha t  the metas tab le  free energy has a t h e r m o d y n a m i c  
limit.  Only  the stable state shares this p roper ty .  

In  Table  I I ,  the metas table  free energy is c o m p a r e d  with the free energy 
ob ta ined  by  eva lua t ion  o f  the  first few terms o f  the low- tempera ture  expans ion  
[up to  ix~g4(z) in the no ta t ion  o f  Ref. 10] for  H < 0, and  for  T = 1. (Presum- 
ably  for H < 0 the  series is an a sympto t i c  expansion.)  The  magne t iza t ion  is 
also shown. F o r  low IHI the low- tempera tu re  expans ion  and  the t ransfer  
mat r ix  are  seen to agree very well. We  have also checked T = 1.25 and  
T = 0.714... (v = 1.4) and  found  similar  results. The  agreement  is bet ter  for  
T = 0.714... and  worse for  T = 1.25, as expected.  

The  values o f  H in Table  I I  are chosen so as to be away  f rom the regions 
where  the metas tab le  state crosses o ther  energy levels (cf. Fig.  1). In  these 

- H  

Table I. Metastable Free Energy for Various N and H at  T = 1.0 
i 

N = 5  N = 7  N - - - 9  N = l l  

0.1 - 1.9004292157 - 1.9004292179 - 1.9004292179 - 1.9004292179 
0.3 - 1.7006573235 - 1.7006573445 -- 1.7006573404 -- 1.7006573403 
0.9 - 1.1030688848 -- 1.1030692876 - 1.1030692860 - 1.1030692860 
1.5 -0.5086656612 -0.5086657017 -0.5086657018 --0.5086657018 
1.9 -0.1395653130 -0.1396039301 -0.139606245 -0.1396064060 
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Table II. Metastable Free Energy and Magnetization from 
Transfer Matr ix  and Low-Temperature Expansion = 

i 

- H F (LT) m (LT) F (TM) m (TM) 

0 2.00034826 0.99928 2 .00034828 0.99927 
0.3 1.70065662 0.99858 1 .70065734 0.99857 
0.6 1.401287 0.99696 1.401317 0.99626 
0 . 7 5  1.251862 0.99521 1.251798 0.99424 
0.90 1.102807 0.99176 1.103069 0.98515 
1 .15  0.856628 0.97310 0.852532 0.98445 
1.75 0.473 -0.62 0.270519 0.91939 

i 

To fourth order in exp(21Hr/T), for T = 1.0. Columns 2 and 3 are 
low-temperature (LT) expansion values for free energy and m, respec- 
tively, and columns 4 and 5 give the corresponding data for the transfer 
matrix (TM). 

crossing regions the identification of the metastable state is more complicated 
than previously discussed. The reason is that the translationally invariant 
states " in te rac t"  with the metastable state when they cross as a function of H. 
The crossed lines are replaced by a hyperbola, so that a gap results between 
the free energy levels. The actual crossing occurs at two branch points in the 
complex H plane located symmetrically about the real H axis. Their distance 
from the real H axis, and consequently the size of  the free energy gap for real 
H, is related to the transfer matrix element coupling the two states. 

Conjectures 2 and 3 of  Ref. 1 proposed that in the thermodynamic limit 
(N--+ or) these branch points approach the real H axis and consequently the 
gaps in the free energy for real H should shrink to zero. Such a shrinking 
would allow analytic continuation of  the metastable free energy through the 
eigenvalue crossing, as proposed in Ref. 1. 

From our numerical work, we have found that by taking a path in the 
complex H plane one can in fact begin on the putative metastable state on 
one side of  a crossing and end on the metastable level on the other side. 
Such a path is shown in Fig. 2 for the crossing near H = -1 .0  for N --- 9 
and T = 1.0. Figure 2a shows the crossing region in detail for real H. Eleven 
levels cross the metastable state. Figure 2b is the path taken in the complex H 
plane. It leaves the real H axis at H = -0 .91  and returns at H = -1.11. 
Finally, Fig. 2c shows the analytic continuation of the free energy. The path 
chosen is not a special one. Any path in complex H that goes around the 
branch point associated with the metastable crossing will connect the 
appropriate levels in real H. 

These results support  the conjecture of  Ref. 1 that the metastable free 
energy can be analytically continued through the crossing regions. However, 
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Fig. 2. Details of an energy level crossing near Re H = - 1 ,  for T = 1.0, N = 9 (i.e., 
the 29 x 29 transfer matrix). (a) Energy levels for 0.98 <~ - H  <~ 1.04 with Im H = 0. 
(b) A path in the complex/-/plane around the branch point. The path is H = -1.01 + 
0.1 cos ~rx + i0.1 sin ~rx, 0 ~< x ~< 1. (c) Real and complex parts of the free energy for 
the 12 levels involved in the crossing as H moves on the path shown in Fig. 2b. A path 
starting on the metastable level shown in the lower left-hand part of Fig. 2a ends on the 
metastable level in the upper right-hand part. 

we find that ,  con t ra ry  to the  o ther  conjecture,  the  gap  size does no t  shr ink  to 
zero as N--> oo. In  fact, the  gap size changes very litt le with N. This  can be 
seen in Table  I I I  for  var ious  crossings.  Pre l iminary  results also suggest tha t  
the b ranch  poin ts  do not  a p p r o a c h  the real  H axis, in agreement  wi th  approx i -  
mate  cons tancy o f  the  gap size. The  reason for  bo th  p h e n o m e n a  is tha t  for  
large enough N each crossing consists no t  s imply o f  a single state crossing the 
metas tab le  state, bu t  ra ther  o f  cont inua  which s imul taneously  cross it  (cf. 
Figs. 1 and  2a). 

We  also observe tha t  to the r ight  of  each gap ( IHI  greater)  the  magnet iza-  
t ion  increases with IHI.  This  devia t ion  f rom monoton ica l ly  decreasing 
behavior  also seems unchanged  with  N. In Sect ion 3 we relate  this  non-  
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Fig. 2. Continued. 

T a b l e  I I I .  G a p  S ize  a t  V a r i o u s  Level  C r o s s i n g s  a n d  f o r  
V a r i o u s  N f o r  T = 1 ,0  r 

- H  N =  5 N =  7 N =  9 N =  11 

4/5 - -  0.0058 0.0093 0.0099 
1 0.02086 0.02207 0.02218 0.02197 
4/3 0.0090 0.0111 0.0101 0.0108 
2 0.1630 0.1650 0.1639 0.1640 

First column is approximate value of - H  at the crossing. 
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concavity in the free energy to the Monte Carlo decay rate. To prepare for 
this section, we next investigate the crossing regions in more detail. 

2.3. Location of the  Crossings 

For low T two states I/x*> and I/x'*> have approximately the same energy 
if 

</xl L]/x> = </x'l LI/x'> (8) 

Therefore the value of H at which a crossing between the metastable state 
and a state of single excitation [defined by Eqs. (5) and (7)] occurs is given by 

<0ILl0> -- <xllLIxl> for any x = 1 ..... N (9) 

The result is 

Hc = - 2 J / l ,  l = 1, 2,... (10) 

As noted previously, for large N, continua of states also participate in the 
crossings. For  the single excitation crossing described by l the participating 
continua are those associated with k excitations (k = 2, 3,...) of a total of 
kl ( - )  spins. The single excitation crossings will be seen in Section 3 to be 
located at the same value of H as the Monte Carlo value needed for formation 
of an l x l critical droplet. Finally, we note that k = 2, 3,... excitation states 
also participate in crossings with the metastable state that are not associated 
with single excitation crossings. Equating the diagonal elements of the 
transfer matrix of these states with the metastable matrix element [cf. Eq. (8)] 
gives 

Hc = -2Jk / l ,  k, l = 2, 3 .... (11) 

Our numerical work confirms these values of Hc and those given by Eq. (10) 
for low T. 

2.4. Crude Mode l  of  the  Crossing 

Consider only the 2 x 2 matrix that is the restriction of the transfer 
matrix to the states 10"> and [l*> and assume N exp( -2v l )  is small, the latter 
assumption inappropriate for the thermodynamic limit but apparently useful 
for the range of  N, T, and H that we study. The restricted transfer matrix is 

(<0*iLl0*> </*ILl0*>] 
W= \<0*]LlZ*> <I*ILIZ*>] 

= A( 1 yu'X/'~/ ) 
ycc~e/-K y2{1 + [213(1 - /3~-1)/(1 - 3)1 + ( N -  2l + 1)/~ ~} (12) 



Metastabil i ty in the Two-Dimensional  Ising Model 301 

with 

z = h - he, hc = v H c ,  y -- e x p ( - l z )  
(13) 

cz = exp(-21v), /3 = exp( -4v) ,  A = exp[N(2v + h)] 

The eigenvalues of  W / A  are 

�89 + uy  2) + �89 - uy2) 2 + 4N,  z2y2] 1/2 (14) 

where 

~t = ~ + 2/3(1 - / 3 ~ - I ) / ( i  - / 3 )  + (N  - 2l + l ) y  (15) 

If  it is assumed that 4 N ,  z~y 2, N/3 ~,/3, and lz  are all small, then one of the energy 
levels [ ( -  1 / N )  log(eigenvalue)] associated with W goes asymptotically to the 
metastable level and in a range of h neither too close nor too far from the 
crossing is approximated by 

E = - 2 v  - h - c~2/[2l(h - ho)] = - 2 v  - h - v(AF)~.  (16) 

where h0 is a real number near he. Equation (16) defines a two-level "level 
shift"  function kF~;(h). As a function of  x --- - h  (xo - -h0) ,  E ( x )  is a 
hyperbola lying above the line E = - 2 v  + x for x > xo and approaches the 
line asymptotically for large x. For x < xo, E lies below - 2 v  + x and 
approaches it asymptotically. The function (&F)~ and the corresponding 
function (kF):v defined below serve also as measures of  the deviation of the 
free energy from concavity and hence from stability. 

It turns out that the crossings of  the transfer matrix, even though they 
involve far more than two levels, can be well approximated by a curve of the 
form (16). Values ofho and ~ are obtained from the data ( " l "  of course is a 
property of  the particular crossing under investigation). The test of  the 
validity of  the quite crude estimates of  this section is whether indeed the value 
of ~ obtained from the fit is approximately equal to e x p ( -  21v). In Table IV 
we compare the theoretical values of  " l "  at the two crossings H = - 2 / 3  and 

Table IV. The Measured [ Com- 
pared to / ,  the Number of Inverted 
Spins at the Particular Crossing 

- H T I / ( H )  

2/3 1.0 2.68 3 
2/3 0.714 2.86 3 
2/3 0.5 2.96 3 
1.0 1.25 1.90 2 
1.0 1.0 1.92 2 
1.0 0.714 1.96 2 

I ] I I  ] 
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- 1  (l = 3 and 2, respectively) with L To get i we use the value ~ obtained by 
fitting the energy levels to the formula  (16) and then set ~ = exp(-21v).  This 
in effect defines a level shift AFN(h) for the numerical  free energy. It  will be 
seen that  the agreement gets progressively better for lower temperatures,  
indicating that  our  very simple-minded picture does have some validity. 

Expression (14) also gives some rough indication o f  where the branch 
point  He occurs. F rom (14) one might  expect Im He ~ ~ / -N ,  however, in 
preliminary checks we have found almost  no N dependence at all. The ~ in 
Im He suggests a definite temperature dependence, namely Im He 
e x p ( - 2 1 I T ) ,  and there are preliminary indications that  this is approximately 
true. We can only speculate on the absence o f  the ~ dependence:  Perhaps 
the presence of  the other levels affects this aspect of  the model  more  than it 
does the predictions inherent in Eq. (16). 

Yet another  speculative step is to suppose there are branch points with 
imaginary par t  at e x p ( - 2 1 I T )  for l = 1, 2, 3 .... , so that  as Re H - +  0 these 
singularities crowd closer and more  densely about  the real H axis. This would 
lead to an essential singularity, but  at the same time suggests the absence of  
singularity on the imaginary H axis any finite distance above H =- 0. Thus 
the imaginary H axis would not  be a natural  boundary  for the analytic 
cont inuat ion o f  the free energy. 

3. D Y N A M I C A L  I S I N G  M O D E L  

We again consider an N x N lattice with periodic boundary  conditions. 
The external field H is chosen so that  the equilibrium magnetizat ion m is 
close to -1 .0 .  The system is started with m near the metastable value + 1.0. 
The dynamics is as described in Ref. 11 except that  the site at which each spin 
flip is a t tempted is chosen randomly.  Typically m fluctuates until it drops 
below some critical value, after which the system goes directly to equilibrium. 
For  the temperatures and system sizes N at which we work  the passage to 
equilibrium is much faster than the initial period necessary to reach the 
critical value. More  will be said on this point  later. The computer  experiment 
is performed repeatedly with different r andom evolution. For  those systems 
that  have not  decayed at the end of  some given time a we measure the average 

3 The measured lifetimes were relatively insensitive to the time chosen. For example, 
four runs at H = -1.2, T = 0.9 on an 11 x 11 lattice gave lifetimes of 47, 43, 51, and 
40 sec for cutoff times of 79, 95, 95, and 159, respectively. Variations of 10 or even 20~70 
in lifetime (under identical circumstances but with different random numbers) were 
common. We considered this reasonable in view of the fact that as H and T varied we 
observed variations in lifetimes of more than a factor of 100. The four values of ~ [see 
Eq. (17)] associated with the above measurements are 7.8, 7.7, 7.9, and 7.6, showing, as 
expected for a logarithm, much less variation. The total range of 4, measured in our 
numerical experiments (many not reported here) was from about 2 to about 15. 
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magnetization during the second half of their evolution. Those that have 
decayed provide data for the determination of a decay rate P(T, H) through 
the fitting of the decay times to an exponential decay law. 

I ~ or its inverse, the lifetime, is measured in time units of spin flip 
attempts per site, so that each second represents N 2 spin-flip attempts. Given 
F, let A be the expected number of spin-flip attempts before decay; thus 
A = N 2 / I  ". For low T and moderate N we find that A is independent of N, 
implying a constant decay rate per unit volume. Figure 3 shows a log-log plot 
of lifetime (i.e., l/P) vs. N, confirming the volume dependence of lifetime 
suggested by Eq. (1). For N large enough that the time for passage to equi- 
librium exceeds the time of formation of the critical droplet this dependence 
is expected to break down. For given measured A, let 

4,(T, H) = Tlog A (17) 

This definition is useful only if systematic dependence of 4, on H and T is 
found. 

Our data can be understood by interpreting 4' to be the free energy of a 
critical droplet relative to the free energy of the metastable state. Moreover, 
the droplet free energy will be of the form E - : IS ,  with E an easily identified 

t 

o 
_A 

2 r- 

ol 
o 

�9 �9 

I 

2 

Log N 

I I I 
3 4 5 

Fig. 3. Logarithm of lifetime of the metastable state on an N x N lattice vs. logarithm 
of N for the dynamical Ising model at T = 0.9 and H = -1.1 .  A least squares fit to the 
slope for data points involving N between 5 and 50 gives -2.0067, in good agreement 
with the value 2 expected from Eq. (1). 
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Fig. 4. The energy as a function of droplet size a for H = -1.  Where several configura- 
tions are possible for given a, the minimum energy is plotted. 

droplet energy. In the conventional description the metastable state is a 
free-energy minimum, with the free energy of the critical droplet the minimum 
barrier to be crossed to get to the stable state. The height AE of  this barrier 
relative to the metastable free energy is what ought to appear as the 4, of 
formula (1). 

The foregoing description can be tested quantitatively against the Monte 
Carlo data. We first compare AE and 4,. For AE we make the most naive 
possible estimate in terms of the energy cost for the creation of various 
configurations of  reversed spins against a background of all ( + )  spins. 
Taking the lsing energy to be E = - J Z  ~r - HY, ~r with J = 1, in Fig. 4 
we plot AE as a function of  droplet size at H = -1.0.  Thus at H = - I . 0  the 
creation of two ( - )  spins in a background of (+)  spins costs 12J - 4H = 8.0. 
The maximum b E  is 10.0, in general agreement with 4,(T, -1.0)  measured at 
various T. For  example, 4,(1.0, -1 .0)  = 9.0. This agreement improves as T 
decreases, so that q~(0.833, -1.0)  = 9.3. Second, consider ~(T, H)  for fixed T. 
I f  the critical droplet dominates, then d,~/dH should be determined by the 
number of  spins reversed in the critical droplet. The barrier description 
implies that for 2/3 ~< IHI < 1 this slope should be - t 4  (for this range of H 
there are seven reversed spins in the critical droplet) and should change to - 6 
for [HI > 1. These numbers are T independent except insofar as the zero-T 
critical droplet description is more accurate for lower T. For  T = 0.9, Fig. 5 
shows the function ~ + 6.50[H[ plotted against IHI, the linear term in [HI 
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Fig. 5. Plot of ~(T, H) + 6.50]H1 as a function 

of IHI for T = 0.9. 
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having been included so as to aid in displaying the change in slope. Measured 
slopes of q~ are -12.67 and -6 .50 for ]H] < 1 and IH] > I, respectively, 
lending yet more support to the droplet model. 

Finally, we make a crude analytic estimate of q~ for small fixed H and T 
near zero. Assuming a square critical droplet of side j, maximizing 2xE with 
respect to j gives j = 2J/[H [. Identifying 4, with max AE, we find 

c~ = 8J~/IH] (18) 

(Allowing for changed definitions of J and H, the same expression appears in 
Ref. t2.) The decay rate is then 

F = N 2 e x p ( - S J 2 / [ H [ T )  (19) 

suggesting an essential singularity for H - +  0. (There is a flaw in this argument 
which weakens considerably whatever implications it may have for conclusions 
about an essential singularity. Specifically, we looked at fixed H and T--+ 0. 
The correct argument should involve fixed T with H--+ 0. In this limit it seems 
unlikely that a square critical droplet is appropriate.) 

4. RELATING TRANSFER MATRIX  A N D  MONTE CARLO 
RESULTS 

We have thus provided crude calculations showing that the Monte Carlo 
decay rate [cf. Eq. (19)] and the transfer matrix level shift [cf. Eq. (16)] are 
proportional to 

c~ 2 = exp( -  8 J 2 / T l a l )  (20) 

This provides a link between these two seemingly different phenomena. We 
review the steps: 

Numerical transfer matrix AFN (gap size and measurement of noncon- 
cavity of the free energy F) relates to: 

Theoretical transfer matrix 2~Fr (two level), which relates to: 
Theoretical Monte Carlo 17 (square droplet), which relates to: 
Experimental Monte Carlo 17. 

The first corinection relies on the correctness of the two-level picture and is 
supported by Table IV. The second connection arises because both AFt for 
the two-level model and 17 for the square critical droplet are calculated to be 
proportional to c~ z [cf. Eqs. (16) and (19)]. The last connection requires the 
identification of ,~ with max AE (cf. Figs. 4 and 5), and the relevance of the 
square droplet. 

Having established an interpretation of the gaps, it remains to find 
physical values of m and F in the crossing regions. If  these regions survive as 
Nincreases, it seems possible that a kind of Maxwell rule could be invented, 
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Fig. 6. Magnetization as a function of - H  for T = 1. The points are from dynamic 
Monte Carlo numerical experiments. The curves are from the transfer matrix eigenvalue 
that yields the largest magnetization at the given H. 

e.g., "Le t  m be a linear decreasing function tangent to the magnetization 
curves of  the metastable levels." The plausibility of  some such Ansatz is 
suggested by Fig. 6. For  small IHI the transfer matrix magnetization nearly 
rises to the physical value between the crossings. However, after the crossing 
at IHI - 2/3 it remains below the Monte Carlo error bars. Even so, the 
transfer matrix values suggest a general shape and lower bound for m in this 
region. A further encouraging property is the N independence of m even in 
crossing regions, despite the increasing number of  levels involved as N 
increases. For  N = 9 and 11 we find agreement to the fifth decimal place for 
the 12 points, all in crossing regions, that we have checked. 

The picture emerging f rom our work on the transfer matrix is that 
sufficiently far off the real H axis the free energy can be analytically continued 
to Re H < 0, but that near the negative real H axis there is an infinity of  
singularities near 

H = ( - 2 J k / l )  + i e x p ( - 2 J l / T ) ,  k, l = 1, 2 .... (21) 

suggesting that the point H = 0 is an essential singularity. On the real negative 
H axis the physical free energy is derived from the transfer matrix eigenvalue 
of largest magnetization or from some concave function defined from those 
eigenvalues obtained by means of a Maxwell rule or similar prescription. 

5. C O N C L U S I O N S  A N D  R E M A R K S  

For  the lattice sizes N studied in this paper the existence of some sort of  
metastability seems well established, both in the "exper imenta l"  Monte 
Carlo work and in the analytic behavior of  the free energy as inferred from 
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the eigenvalues of the transfer matrix. While the conjectures of Ref. 1 have 
turned out to be only partially correct, the basic idea of that paper, namely 
analytic continuation by means of the eigenvalues, appears valid even if the 
singularities of the free energy remain a finite distance off the real H axis as 
N changes. Moreover, as verified by the Monte Carlo data, this analytic 
continuation seems to have something to do with the physical metastab]e 
state. 

There is, however, one caveat which we feel compelled to mention. Even 
though we have found numerically little change in our results as N increased-- 
from 5 to 11 for the transfer matrix and from 5 to 50 for the dynamic model-- 
there is reason to believe that for considerably larger N, magnetizations and 
lifetimes might begin to change. This must surely be true for the dynamic 
model. For as N gets large enough, the time taken by critical droplets to grow 
and meet each other must exceed the time needed to form the first critical 
droplet. (This is because the latter time shrinks with iV, while the former is 
determined by some sort of average spacing between droplets.) Thus for N 
large enough the lifetime ceases to shrink and Eq. (1) is no longer valid. This 
point has been made by Mtiller-Krumbhaar and by Stoll and SchneiderJ s~ 
It is not clear whether similar limiting factors exist for the transfer matrix 
branch points. One feature is clear: The simple-minded estimates based on 
assuming that the metastable ground state is all (+) spins must break down, 
since the metastable magnetization is after all not exactly unity and therefore 
for sufficiently large N the biggest contribution to the ground state will be 
from states with several overturned spins. On the other hand, similar problems 
arise in the Lipkin model (1~ where the replacement of a complicated super- 
position of states by a single state leads to estimates that are valid in the 
various asymptotic limits taken there. At this point the status of this problem 
for the Ising model transfer matrix structure is just not known. 

In the event that for N-+ oe free-energy singularities do not move 
farther from the real Haxis, there would seem to be a good chance of proving 
that free energy can be analytically continued to Re H < 0 at some finite 
distance above the real H axis. Should, however, the singularities not remain 
fixed for very large N, a different view of metastability emerges: There is a 
region in the parameter space of N, T, and H where an empirically well- 
defined metastable state exists, has a reproducible magnetization and life- 
time, and in which variation of N does not change these properties by much. 
Physically, this would mean that metastability is a finite-N (or volume) 
phenomenon but that this volume effect is not manifested except for very 
large volumes--where, in contrast to the usual situation, 1023 may not be 
"large" for many physical systems. Mathematically it would mean that the 
results we have been getting--the stability of branch points and volume 
dependence of lifetime indicated in Fig. 3--are analogous to an asymptotic 
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expans ion  with agreement  improv ing  with N for a while, but  u l t imate ly  

b reak ing  down.  
Again ,  our  numer ica l  and  crude analyt ica l  computa t ions  canno t  decide 

the  issues o f  the foregoing  pa rag raph .  However ,  even i f  metas tabi l i ty  is lost for  
N - +  0% our  results are  still re levant  to the l abo ra to ry  phenomenon .  
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