Example

Consider the voltage divider circuit

The resistor represents a temperature sensor. Suppose the resistance R, in Ω, is related to the temperature T, in ${ }^{\circ} \mathrm{C}$, by the equation

$$
R=50+\frac{1}{2} T
$$

Suppose the temperature is expected to be in the range $0^{\circ} \mathrm{C} \leq T \leq 100^{\circ} \mathrm{C}$.
a) Determine the meter voltage, v_{m}, corresponding to temperatures $0^{\circ} \mathrm{C}, 75^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
b) Determine the temperature, T, corresponding to the meter voltages $8 \mathrm{~V}, 10 \mathrm{~V}$ and 15 V .

Solution

Using voltage division

$$
v_{\mathrm{m}}=\left(\frac{R}{75+R}\right) 20
$$

Solving for R yields

$$
R=\frac{75 v_{\mathrm{m}}}{20-v_{\mathrm{m}}}
$$

The temperature can be calculated from the resistance using

$$
T=2(R-50)=2\left(\frac{75 v_{\mathrm{m}}}{20-v_{\mathrm{m}}}-50\right)=\frac{150 v_{\mathrm{m}}}{20-v_{\mathrm{m}}}-100
$$

a) At $0{ }^{\circ} \mathrm{C}$ the resistance is $R=50 \Omega$ so $v_{\mathrm{m}}=\left(\frac{50}{75+50}\right) 20=8 \mathrm{~V}$. At $75^{\circ} \mathrm{C}$ the resistance is $R=87.5 \Omega$ so $v_{\mathrm{m}}=\left(\frac{87.5}{75+87.5}\right) 20=10.77 \mathrm{~V}$. At $100^{\circ} \mathrm{C}$ the resistance is $R=100 \Omega$ so $v_{\mathrm{m}}=\left(\frac{100}{75+100}\right) 20=11.43 \mathrm{~V}$.
b) When $v_{\mathrm{m}}=8 \mathrm{~V}$, the temperature is $T=\frac{150(8)}{20-8}-100=0^{\circ} \mathrm{C}$. When $v_{\mathrm{m}}=10 \mathrm{~V}$, the temperature is $T=\frac{150(10)}{20-10}-100=50^{\circ} \mathrm{C}$. When $v_{\mathrm{m}}=15 \mathrm{~V}$, the temperature is $T=\frac{150(15)}{20-15}-100=350^{\circ} \mathrm{C}$.

