Example

Consider the voltage divider circuit

The resistor represents a temperature sensor. Suppose the resistance R, in Ω , is related to the temperature T, in ${}^{\circ}$ C, by the equation

$$R = 50 + \frac{1}{2}T$$

Suppose the temperature is expected to be in the range $0^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$.

- a) Determine the meter voltage, $v_{\rm m}$, corresponding to temperatures 0 °C, 75 °C and 100 °C.
- b) Determine the temperature, T, corresponding to the meter voltages 8 V, 10 V and 15 V.

Solution

Using voltage division

$$v_{\rm m} = \left(\frac{R}{75 + R}\right) 20$$

Solving for *R* yields

$$R = \frac{75 v_{\rm m}}{20 - v_{\rm m}}$$

The temperature can be calculated from the resistance using

$$T = 2(R - 50) = 2\left(\frac{75v_{\rm m}}{20 - v_{\rm m}} - 50\right) = \frac{150v_{\rm m}}{20 - v_{\rm m}} - 100$$

a) At 0 °C the resistance is $R = 50 \Omega$ so $v_{\rm m} = \left(\frac{50}{75 + 50}\right) 20 = 8 \text{ V}$. At 75 °C the resistance is

$$R = 87.5 \ \Omega$$
 so $v_{\rm m} = \left(\frac{87.5}{75 + 87.5}\right) 20 = 10.77 \ \text{V}$. At 100 °C the resistance is $R = 100 \ \Omega$ so $v_{\rm m} = \left(\frac{100}{75 + 100}\right) 20 = 11.43 \ \text{V}$.

b) When $v_{\rm m} = 8$ V, the temperature is $T = \frac{150(8)}{20-8} - 100 = 0$ °C. When $v_{\rm m} = 10$ V, the temperature is

$$T = \frac{150(10)}{20-10} - 100 = 50$$
 °C. When $v_{\rm m} = 15$ V, the temperature is $T = \frac{150(15)}{20-15} - 100 = 350$ °C.