Example

Computer analysis of this circuit gives

$$
i_{1}=1.5 \mathrm{~A}, v_{2}=6 \mathrm{~V}, v_{3}=60 \mathrm{~V} \text { and } v_{4}=22.5 \mathrm{~V}
$$

How can we check that these values are correct?

Solution:

1. Check KCL.

Label nodes a and b:

Apply KCL at node a to get

$$
i_{1}=\frac{v_{2}}{6}+\frac{v_{2}}{12}
$$

Substituting the given values we get

$$
1.5=\frac{6}{6}+\frac{6}{12}
$$

Hence KCL is satisfied at node a. Next, apply KCL at node b to get

$$
5 i_{1}=\frac{v_{3}}{10}+\frac{v_{4}}{15}
$$

Substituting the given values we get

$$
5 \times 1.5=\frac{60}{10}+\frac{22.5}{15} \Rightarrow 7.5=6+1.5
$$

Hence KCL is satisfied at node b.

2. Check KVL.

Apply KVL to the left mesh to get

$$
4 i_{1}+v_{2}-12=0
$$

Substituting the given values we get

$$
4(1.5)+6-12=0
$$

Hence KVL is satisfied for the left mesh. Next, apply KVL to the right mesh to get

$$
25\left(\frac{v_{4}}{15}\right)+v_{4}-v_{3}=0
$$

Substituting the given values we get

$$
25\left(\frac{22.5}{15}\right)+22.5-60=0
$$

Hence KVL is satisfied for the right mesh.

3. Check Ohm's law for equivalent resistances.

The parallel 6Ω and 12Ω resistors are equivalent to a single $\frac{6 \times 12}{6+12}=4 \Omega$ resistor. Apply
Ohm's law to this equivalent resistor to get

$$
v_{2}=4 i_{1}
$$

Substituting the given values we get

$$
6=4(1.5)
$$

Hence Ohm's law is satisfied. The equivalent 4Ω resistor is in series with the 4Ω in the given circuit. These series resistors are equivalent to a single 8Ω resistor. Apply Ohm’s law to this equivalent resistor to get

$$
12=8 i_{1}
$$

Substituting the given values we get

$$
12=8(1.5)
$$

Hence Ohm's law is satisfied. The series 25Ω and 15Ω resistors are equivalent to a single 40Ω resistor. That equivalent resistor is connected in parallel with the 10Ω in the given circuit. These parallel resistors are equivalent to a single $\frac{10 \times 40}{10+40}=8 \Omega$. Apply Ohm's law to this equivalent resistor to get

$$
v_{3}=8\left(5 i_{1}\right)=40 i_{1}
$$

Substituting the given values we get

$$
60=40(1.5)
$$

Hence Ohm's law is satisfied.

4. Check voltage division.

Consider the series 25Ω and 15Ω resistors. Voltage division gives

$$
v_{4}=\left(\frac{15}{15+25}\right) v_{3}=\left(\frac{3}{8}\right) v_{3}
$$

Substituting the given values we get

$$
22.5=\left(\frac{3}{8}\right) 60
$$

Hence voltage division is satisfied for the series 25Ω and 15Ω resistors. Next, notice that the parallel 6Ω and 12Ω resistors are equivalent to a single 4Ω resistor. That equivalent resistor is in series with the 4Ω in the given circuit. Voltage division gives

$$
v_{2}=\left(\frac{4}{4+4}\right) 12=6 \mathrm{~V}
$$

Hence voltage division is satisfied.

5. Check conservation of power.

The power supplied by the sources must be equal to the power received by the resistors. That is

$$
12 i_{1}+v_{3}\left(5 i_{1}\right)=4 i_{1}^{2}+\frac{v_{2}^{2}}{6}+\frac{v_{2}^{2}}{12}+\frac{v_{3}^{2}}{10}+25\left(\frac{v_{4}}{15}\right)^{2}+\frac{v_{4}^{2}}{15}
$$

Substituting the given values we get

$$
\begin{gathered}
12(1.5)+v_{3}(5 \times 1.5)=4\left(1.5^{2}\right)+\frac{6^{2}}{6}+\frac{6^{2}}{12}+\frac{60^{2}}{10}+25\left(\frac{22.5}{15}\right)^{2}+\frac{22.5^{2}}{15} \\
18+60(7.5)=4(2.25)+6+3+360+25(2.25)+33.75 \\
468=468
\end{gathered}
$$

The power supplied by the sources is indeed equal to the power received by the resistors.

