

The input to this circuit is the source voltage, v_{s}. The output is the voltage measured by the meter, v_{o}. A voltage divider connects the source to the meter. Given these observations:
A. The input $v_{\mathrm{s}}=10 \mathrm{~V}$ causes the output to be $v_{\mathrm{o}}=2 \mathrm{~V}$.
B. When $v_{\mathrm{s}}=50 \mathrm{~V}$ the source supplies 5 W .

Answer the following questions:
a. What in the value of the output when $v_{\mathrm{s}}=25 \mathrm{~V}$?

From the given observations, the gain of the voltage divider is $g=\frac{v_{\mathrm{o}}}{v_{\mathrm{s}}}=\frac{2}{10}=0.2 \mathrm{~V} / \mathrm{V}$.
Consequently, an input of $v_{\mathrm{s}}=25 \mathrm{~V}$ causes the output to be $v_{\mathrm{o}}=g v_{\mathrm{s}}=0.2 \times 25=5 \mathrm{~V}$.
b. What input is required to cause the output to be $v_{0}=15 \mathrm{~V}$?

$$
v_{\mathrm{o}}=g v_{\mathrm{s}} \Rightarrow 15=0.2 v_{\mathrm{s}}=v_{\mathrm{s}}=\frac{15}{0.2}=75 \mathrm{~V}
$$

c. How much power will the source supply when $v_{\mathrm{s}}=20 \mathrm{~V}$?

The power supplied by the source is $p=\frac{v_{\mathrm{s}}{ }^{2}}{R_{1}+R_{2}}=\frac{v_{\mathrm{s}}{ }^{2}}{R_{\mathrm{in}}}$ where $R_{\mathrm{in}}=R_{1}+R_{2}$. We may not know the resistance values, but we know that they haven't changed. From the given observations, $R_{\mathrm{in}}=\frac{v_{\mathrm{s}}{ }^{2}}{p}=\frac{50^{2}}{5}=\frac{2500}{5}=500 \Omega$. Consequently, an input of $v_{\mathrm{s}}=25 \mathrm{~V}$ requires the source to supply $p=\frac{v_{\mathrm{s}}{ }^{2}}{R_{\mathrm{in}}}=\frac{25^{2}}{500}=\frac{625}{500}=1.25 \mathrm{~W}$.
d. How much power will the source supply when the output is $v_{\mathrm{o}}=20 \mathrm{~V}$?

$$
\begin{gathered}
v_{\mathrm{o}}=g v_{\mathrm{s}} \Rightarrow 20=0.2 v_{\mathrm{s}}=v_{\mathrm{s}}=\frac{20}{0.2}=100 \mathrm{~V} \\
p=\frac{v_{\mathrm{s}}^{2}}{R_{\mathrm{in}}}=\frac{100^{2}}{500}=\frac{10000}{500}=20 \mathrm{~W}
\end{gathered}
$$

e. How large can the input be if we require that the source supplies at most 1 W ?

$$
1 \geq \frac{v_{\mathrm{s}}^{2}}{500} \Rightarrow v_{\mathrm{s}}^{2} \leq 500 \Rightarrow v_{\mathrm{s}} \leq \sqrt{500}=22.36 \mathrm{~V}
$$

f. What are the values of the resistances?

$$
0.2=g=\frac{R_{2}}{R_{1}+R_{2}} \text { and } 500=R_{\mathrm{in}}=R_{1}+R_{2} \Rightarrow\left\{\begin{array}{c}
R_{1}=(1-g) R_{\mathrm{in}}=400 \Omega \\
R_{2}=g R_{\mathrm{in}}=100 \Omega
\end{array}\right.
$$

