R-2R Ladder Networks

Example

Consider the $R-2 R$ ladder network:

Show that

$$
v_{1}=\frac{1}{2^{1}} v_{\mathrm{s}}=\frac{1}{2} v_{\mathrm{s}}, v_{2}=\frac{1}{2^{2}} v_{\mathrm{s}}=\frac{1}{4} v_{\mathrm{s}}, v_{3}=\frac{1}{2^{3}} v_{\mathrm{s}}=\frac{1}{8} v_{\mathrm{s}} \text { and } v_{4}=\frac{1}{2^{4}} v_{\mathrm{s}}=\frac{1}{16} v_{\mathrm{s}}
$$

Solution
Reduce the circuit using equivalent resistances as follows:

Using voltage division, we see that

$$
v_{4}=\frac{1}{2} v_{3}, v_{3}=\frac{1}{2} v_{2}, v_{2}=\frac{1}{2} v_{1} \text {, and } v_{1}=\frac{1}{2} v_{\mathrm{s}}
$$

Consequently

$$
v_{1}=\frac{1}{2^{1}} v_{\mathrm{s}}=\frac{1}{2} v_{\mathrm{s}}, v_{2}=\frac{1}{2^{2}} v_{\mathrm{s}}=\frac{1}{4} v_{\mathrm{s}}, v_{3}=\frac{1}{2^{3}} v_{\mathrm{s}}=\frac{1}{8} v_{\mathrm{s}} \text { and } v_{4}=\frac{1}{2^{4}} v_{\mathrm{s}}=\frac{1}{16} v_{\mathrm{s}}
$$

