R-2R Ladder Networks

Example

Consider the *R*-2*R* ladder network:

Show that

$$v_1 = \frac{1}{2^1}v_s = \frac{1}{2}v_s, v_2 = \frac{1}{2^2}v_s = \frac{1}{4}v_s, v_3 = \frac{1}{2^3}v_s = \frac{1}{8}v_s \text{ and } v_4 = \frac{1}{2^4}v_s = \frac{1}{16}v_s$$

Solution

Reduce the circuit using equivalent resistances as follows:

Using voltage division, we see that

$$v_4 = \frac{1}{2}v_3$$
, $v_3 = \frac{1}{2}v_2$, $v_2 = \frac{1}{2}v_1$, and $v_1 = \frac{1}{2}v_s$

Consequently

$$v_1 = \frac{1}{2^1}v_s = \frac{1}{2}v_s$$
, $v_2 = \frac{1}{2^2}v_s = \frac{1}{4}v_s$, $v_3 = \frac{1}{2^3}v_s = \frac{1}{8}v_s$ and $v_4 = \frac{1}{2^4}v_s = \frac{1}{16}v_s$