Another Sample ES 250 Final Exam

1. This circuit has two inputs, v_{s} and i_{s}, and one output i_{0}. The output is related to the inputs by the equation

$$
i_{\mathrm{o}}=a i_{\mathrm{s}}+b v_{\mathrm{s}}
$$

Given the following two facts:

The output is $i_{0}=0.45 \mathrm{~A}$ when the inputs are $i_{\mathrm{s}}=0.25 \mathrm{~A}$ and $v_{\mathrm{s}}=15 \mathrm{~V}$.
and

$$
\text { The output is } i_{0}=0.30 \mathrm{~A} \text { when the inputs are } i_{\mathrm{s}}=0.50 \mathrm{~A} \text { and } v_{\mathrm{s}}=0 \mathrm{~V} \text {. }
$$

Determine the following:
The values of the constants a and b are $\quad a=$ \qquad 0.6 \qquad and $b=\int_{0} 02 \ldots \quad \mathrm{~A} / \mathrm{V}$.

The values of the resistances are $R_{1}=$ \qquad 30 \qquad Ω and $R_{2}=$ \qquad Ω.

From the $1^{\text {st }}$ fact:

$$
0.45=a(0.25)+b(15)
$$

From the 2nd fact:

$$
0.30=a(0.50)+b(0) \Rightarrow a=\frac{0.30}{0.50}=0.60
$$

Substituting gives $0.45=(0.60)(0.25)+b(15) \Rightarrow b=\frac{0.45-(0.60)(0.25)}{15}=0.02$
Next, consider the circuit:

$$
a i_{\mathrm{s}}=i_{\mathrm{o} 1}=\left.i_{\mathrm{o}}\right|_{\mathrm{v}_{\mathrm{s}}=0}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) i_{\mathrm{s}}
$$

so

$$
0.60=\frac{R_{1}}{R_{1}+R_{2}} \Rightarrow 2 R_{1}=3 R_{2}
$$

and
so

$$
0.02=\frac{1}{R_{1}+R_{2}} \Rightarrow R_{1}+R_{2}=\frac{1}{0.02}=50 \Omega
$$

Solving these equations gives $R_{1}=30 \Omega$ and $R_{2}=20 \Omega$.
2. Determine the values of the node voltages v_{a}, $v_{\mathrm{b}}, v_{\mathrm{c}}$ and v_{o} :

$$
\begin{aligned}
v_{\mathrm{a}} & =_2.75 _\mathrm{V}, v_{\mathrm{b}}=-2.8125 _\mathrm{V}, \\
v_{\mathrm{c}} & =_2.25 _\mathrm{V}, \text { and } v_{\mathrm{o}}
\end{aligned}=
$$

Due to the properties of the ideal op amp, $v_{\mathrm{a}}=$ 2.75 V and $v_{\mathrm{c}}=2.25 \mathrm{~V}$. The node equation at node c is

$$
\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{10 \times 10^{3}}=\frac{v_{\mathrm{c}}}{40 \times 10^{3}} \Rightarrow v_{\mathrm{b}}=\frac{5}{4} v_{\mathrm{c}}=2.8125 \mathrm{~V}
$$

The node equation at node c is

$$
\frac{v_{\mathrm{o}}-v_{\mathrm{a}}}{40 \times 10^{3}}=\frac{v_{\mathrm{a}}-v_{\mathrm{b}}}{10 \times 10^{3}} \Rightarrow v_{\mathrm{o}}=5 v_{\mathrm{a}}-4 v_{\mathrm{b}}=2.5 \mathrm{~V}
$$

The node voltage v_{b} is given by

$$
v_{\mathrm{b}}=-3 v_{\mathrm{s}}
$$

The input to this circuit is the voltage v_{s}. The output is the node voltage v_{o}. The output is related to the input by the equation $v_{\mathrm{o}}=m v_{\mathrm{s}}+b$ where m and b are constants.
(a) Suppose $v_{\mathrm{o}}=18 \mathrm{~V}$ when $v_{\mathrm{s}}=1 \mathrm{~V}$ and $v_{\mathrm{o}}=6 \mathrm{~V}$ when $v_{\mathrm{s}}=-1 \mathrm{~V}$. Determine the values of m and b :

$$
m=\ldots 6 \quad \mathrm{~V} / \mathrm{V} \text { and } b=\ldots 12 _\mathrm{V} \text {. }
$$

(b) Instead, suppose that $R_{3}=12 \mathrm{k} \Omega$ and $v_{\mathrm{a}}=3 \mathrm{~V}$. Determine the values of m and b :

$$
m=_5 \quad \mathrm{~V} / \mathrm{V} \text { and } b=_8 _\mathrm{V} .
$$

(c) Instead, suppose that we require $v_{\mathrm{o}}=4 v_{\mathrm{s}}+7$. Determine the required values of R_{3} and v_{a} :

$$
R_{3}=_15 _\mathrm{k} \Omega \text { and } v_{\mathrm{a}}=_3 _\mathrm{V} .
$$

Solution:

(a) From the given data:

$$
\left.\begin{array}{l}
18=m(1)+b \\
6=m(-1)+b
\end{array}\right\} \Rightarrow 18+6=m-m+2 b \quad \Rightarrow \quad b=\frac{24}{2}=12
$$

Then

$$
18=m(1)+12 \Rightarrow m=6
$$

Writing node equations at the inverting input nodes of the op amps gives:
$\frac{v_{\mathrm{s}}}{10}+\frac{v_{\mathrm{b}}}{30}=0 \Rightarrow v_{\mathrm{b}}=-3 v_{\mathrm{s}} \quad$ and $\quad \frac{v_{\mathrm{b}}-v_{\mathrm{a}}}{R_{3}}+\frac{v_{\mathrm{o}}-v_{\mathrm{a}}}{20}=0 \Rightarrow v_{\mathrm{o}}=-\frac{20}{R_{3}} v_{\mathrm{b}}+\left(1+\frac{20}{R_{3}}\right) v_{\mathrm{a}}$
So

$$
v_{\mathrm{o}}=-\frac{20}{R_{3}}\left(-3 v_{\mathrm{s}}\right)+\left(1+\frac{20}{R_{3}}\right) v_{\mathrm{a}}=\frac{60}{R_{3}} v_{\mathrm{s}}+\left(1+\frac{20}{R_{3}}\right) v_{\mathrm{a}}
$$

(b) Substituting values gives $v_{\mathrm{o}}=\frac{60}{12} v_{\mathrm{s}}+\left(1+\frac{20}{12}\right)(3)=5 v_{\mathrm{s}}+8$
(c) Comparing coefficients gives

$$
4=\frac{60}{R_{3}} \Rightarrow R_{3}=15 \Omega \text { and } 7=\left(1+\frac{20}{R_{3}}\right) v_{\mathrm{a}}=\left(1+\frac{20}{15}\right) v_{\mathrm{a}}=\frac{7}{3} v_{\mathrm{a}} \Rightarrow v_{\mathrm{a}}=3 \mathrm{~V}
$$

4. The input to this circuit is the voltage:
$v(t)=4 e^{-20 t} \mathrm{~V}$ for $t>0$
The output is the current: $\quad i(t)=-1.2 e^{-20 t}-1.5 \mathrm{~A}$ for $t>0$

The initial condition is $i_{\mathrm{L}}(0)=-3.5 \mathrm{~A}$. Determine the values of the resistance and inductance:

$$
R=_5 _\Omega \text { and } L=_0.1 _\quad \mathrm{H} .
$$

Solution: Apply KCL at either node to get

$$
i(t)=\frac{v(t)}{R}+i_{\mathrm{L}}(t)=\frac{v(t)}{R}+\left[\frac{1}{L} \int_{0}^{t} v(\tau) d \tau+i(0)\right]
$$

That is

$$
\begin{aligned}
-1.2 e^{-20 t}-1.5=\frac{4 e^{-20 t}}{R}+\frac{1}{L} \int_{0}^{t} 4 e^{-20 \tau} d \tau-3.5 & =\frac{4 e^{-20 t}}{R}+\frac{4}{L(-20)}\left(e^{-20 t}-1\right)-3.5 \\
& =\left(\frac{4}{R}-\frac{1}{5 L}\right) e^{-20 t}+\frac{1}{5 L}-3.5
\end{aligned}
$$

Equating coefficients gives

$$
-1.5=\frac{1}{5 L}-3.5 \Rightarrow L=0.1 \mathrm{H}
$$

And

$$
-1.2=\frac{4}{R}-\frac{1}{5 L}=\frac{4}{R}-\frac{1}{5(0.1)}=\frac{4}{R}-2 \Rightarrow R=5 \Omega
$$

5. After time $t=0$, a given circuit is represented by this circuit diagram.
a. Suppose that the inductor current is

$$
i(t)=21.6+28.4 e^{-4 t} \mathrm{~mA} \text { for } t \geq 0
$$

Determine the values of R_{1} and $R_{3}: \quad R_{1}=$ \qquad 6 \qquad Ω and $R_{3}=$ \qquad 40 \qquad Ω.
b. Suppose instead that $R_{1}=16 \Omega, R_{3}=20 \Omega$, the initial condition is $i(0)=10 \mathrm{~mA}$, and the inductor current is $i(t)=A+B e^{-a t}$ for $t \geq 0$. Determine the values of the constants A, B, and a :

$$
A=_\quad 28.8 _\mathrm{mA}, \quad B=_-18.8 _\mathrm{mA} \text { and } a=_____\mathrm{s} \text {. }
$$

Solution:

The inductor current is given by $i(t)=i_{\mathrm{sc}}+\left(i(0)-i_{\mathrm{sc}}\right) e^{-a t} \quad$ for $t \geq 0$ where $a=\frac{1}{\tau}=\frac{R_{\mathrm{t}}}{L}$.
a. Comparing this to the given equation gives $21.6=i_{\mathrm{sc}}=\frac{R_{1}}{R_{1}+4}(36) \Rightarrow R_{1}=6 \Omega$ and $4=\frac{R_{\mathrm{t}}}{2} \Rightarrow R_{\mathrm{t}}=8 \Omega . \operatorname{Next} 8=R_{\mathrm{t}}=\left(R_{1}+4\right)\left\|R_{3}=10\right\| R_{3} \Rightarrow R_{3}=40 \Omega$.
b. $R_{\mathrm{t}}=(16+4) \| 20=10 \Omega$ so $a=\frac{1}{\tau}=\frac{10}{2}=5 \mathrm{~s}$. also $i_{\mathrm{sc}}=\frac{16}{16+4}(36)=28.8 \mathrm{~mA}$. Then $i(t)=i_{\mathrm{sc}}+\left(i(0)-i_{\mathrm{sc}}\right) e^{-a t}=28.8+(10-28.8) e^{-5 t}=28.8-18.8 e^{-5 t}$.
6. a) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is open:
$\tau=$ \qquad 3 \qquad s and $v(\infty)=$ \qquad 24 \qquad V
b) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is closed:

$\tau=__{2} 25 _\mathrm{s}$ and $v(\infty)=\ldots 12 __\mathrm{V}$

Solution:

a.) When the switch is open we have

After replacing series and parallel resistors by equivalent resistors, the part of the circuit connected to the capacitor is a Thevenin equivalent circuit with $R_{\mathrm{t}}=33.33 \Omega$. The time constant is $\tau=R_{\mathrm{t}} C=33.33(0.090)=3 \mathrm{~s}$.

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 33.33Ω resistor and KVL gives $v(\infty)=24 \mathrm{~V}$.
b.) When the switch is closed we have

This circuit can be redrawn as

Now we find the Thevenin equivalent of the part of the circuit connected to the capacitor:

So $R_{\mathrm{t}}=25 \Omega$ and

$$
\tau=R_{\mathrm{t}} C=25(0.090)=2.25 \mathrm{~s}
$$

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 25Ω resistor and KVL gives $v(\infty)=12 \mathrm{~V}$.
7. Here is an ac circuit represented in both the time domain and the frequency domain:

Determine the values of A, B, a and b.

$$
A=_30.8 _\mathrm{V}, B=_8.47 _\Omega, a=_3.57 _\Omega \text { and } b=_-17.75 _\Omega .
$$

Solution:
The impedance between nodes a and b is given by

$$
18+j(10)(2.5)=18+j 25=30.8 \angle 54.2^{\circ}
$$

To find the impedance between nodes b and c we first find the impedance of the capacitor:

$$
-j \frac{1}{(10)(0.004)}=-j \frac{1}{0.04}=-j 25
$$

then

$$
\frac{9(-j 25)}{9-j 25}=\frac{-j 225}{26.57 \angle-70.2^{\circ}}=\frac{225 \angle-90^{\circ}}{26.57 \angle-70.2^{\circ}}=8.47 \angle-18.8^{\circ} \Omega
$$

The impedance between nodes c and d is given by

$$
\begin{aligned}
\frac{(5)(j(10)(0.88))}{5+j(10)(0.8)}-j \frac{1}{(10)(0.005)}=\frac{j 40}{5+j 8}-j \frac{1}{0.05} & =\frac{j 40}{5+j 8}\left(\frac{5-j 8}{5-j 8}\right)-j 20 \\
& =\frac{320+j 200}{25+64}-j 20 \\
& =3.60+j 2.25-j 20=3.60-j 17.75 \Omega
\end{aligned}
$$

8. Here is an ac circuit represented in both the time domain and the frequency domain:

Given that $\mathbf{Z}_{1}=15.3 \angle-24.1^{\circ} \Omega, \mathbf{Z}_{2}=14.4 \angle 36.9^{\circ} \Omega$ and $\mathbf{V}(\omega)=A \angle 31.5^{\circ} \mathrm{V}$, determine the values of A, R_{1}, R_{2}, L and C.

$$
A=_8.43 __\mathrm{V}, R_{1}=_14 _\Omega, R_{2}=_24 __\Omega, L=_0.9 _\mathrm{H} \text { and } C=__8 _\mathrm{mF} \text {. }
$$

Solution:

Consider \mathbf{Z}_{1} :
$R_{1}-j \frac{1}{20 C}=15.3 \angle-24.1^{\circ}=14-j 6.25 \Rightarrow R_{1}=14 \Omega$ and $C=\frac{1}{20(6.25)}=0.008 \mathrm{~F}=8 \mathrm{mF}$
Next consider \mathbf{Z}_{2} :
$\frac{1}{\frac{1}{R_{2}}+\frac{1}{j 20 L}}=14.4 \angle 53.1^{\circ} \Rightarrow \frac{1}{R_{2}}+\frac{1}{j 20 L}=\frac{1}{14.4 \angle 53.1^{\circ}}=\frac{1}{14.4} \angle-53.1=0.04167-j 0.05556$

Equating coefficients gives

$$
R_{2}=\frac{1}{0.04167}=24 \Omega \text { and } L=\frac{1}{20(0.05556)}=0.9 \mathrm{H}
$$

Next, consider the voltage divider:

$$
\begin{aligned}
A \angle 31.5^{\circ}=\frac{14.4 \angle 36.9^{\circ}}{15.3 \angle-24.1^{\circ}+14.4 \angle 36.9^{\circ}}\left(15 \angle 0^{\circ}\right) & =\frac{(15)(14.4) \angle 36.9^{\circ}}{(14-j 6.25)(11.52+j 8.64)} \\
& =\frac{216 \angle 36.9^{\circ}}{25.52+j 2.39} \\
& =\frac{216 \angle 36.9^{\circ}}{25.63 \angle 5.4^{\circ}}=8.43 \angle 31.5^{\circ} \mathrm{V}
\end{aligned}
$$

