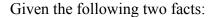
Another Sample ES 250 Final Exam

1. This circuit has two inputs, v_s and i_s , and one output i_{0} . The output is related to the inputs by the equation

$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$



and

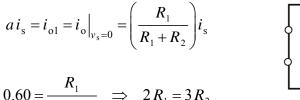
The output is $i_0 = 0.45$ A when the inputs are $i_s = 0.25$ A and $v_s = 15$ V.

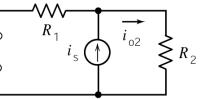
The output is $i_0 = 0.30$ A when the inputs are $i_s = 0.50$ A and $v_s = 0$ V.

Determine the following:

The values of the constants a and b are a = 0.6 and b = 0.02 A/V. The values of the resistances are $R_1 = 30_{\Omega} \Omega$ and $R_2 = 20_{\Omega} \Omega$. From the 1st fact: 0.45 = a(0.25) + b(15) $0.30 = a(0.50) + b(0) \implies a = \frac{0.30}{0.50} = 0.60$ From the 2nd fact: Substituting gives $0.45 = (0.60)(0.25) + b(15) \implies b = \frac{0.45 - (0.60)(0.25)}{15} = 0.02$

Next, consider the circuit:





so

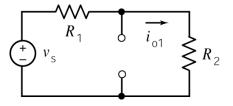
$$0.60 = \frac{R_1}{R_1 + R_2} \implies 2R_1 = 3R_2$$

and

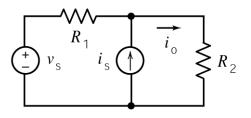
$$bv_{\rm s} = i_{\rm o2} = i_{\rm o}\Big|_{i_{\rm s}=0} = \frac{v_{\rm s}}{R_{\rm 1} + R_{\rm 2}}$$

so

$$0.02 = \frac{1}{R_1 + R_2} \implies R_1 + R_2 = \frac{1}{0.02} = 50 \ \Omega$$



Solving these equations gives $R_1 = 30 \Omega$ and $R_2 = 20 \Omega$.



2. Determine the values of the node voltages v_a , v_b , v_c and v_o :

$$v_{a} = _2.75$$
 V, $v_{b} = _2.8125$ V,
 $v_{c} = _2.25$ V, and $v_{o} = _2.50$ V.

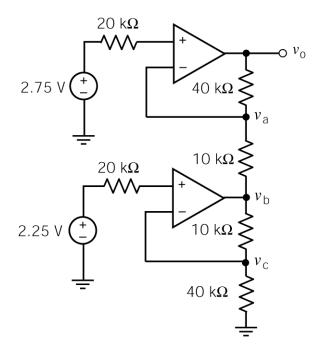
Due to the properties of the ideal op amp, $v_a = 2.75$ V and

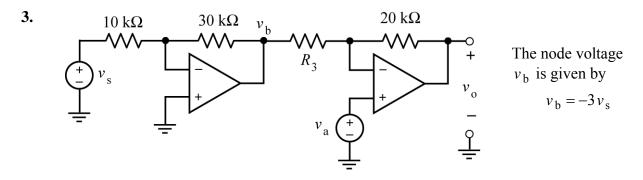
 $v_c = 2.25$ V. The node equation at node c is

$$\frac{v_{\rm b} - v_{\rm c}}{10 \times 10^3} = \frac{v_{\rm c}}{40 \times 10^3} \implies v_{\rm b} = \frac{5}{4} v_{\rm c} = 2.8125 \text{ V}$$

The node equation at node c is

$$\frac{v_{\rm o} - v_{\rm a}}{40 \times 10^3} = \frac{v_{\rm a} - v_{\rm b}}{10 \times 10^3} \implies v_{\rm o} = 5v_{\rm a} - 4v_{\rm b} = 2.5 \text{ V}$$





The input to this circuit is the voltage v_s . The output is the node voltage v_o . The output is related to the input by the equation $v_o = m v_s + b$ where *m* and *b* are constants.

(a) Suppose $v_0 = 18$ V when $v_s = 1$ V and $v_0 = 6$ V when $v_s = -1$ V. Determine the values of *m* and *b*:

$$m = __{6} V/V \text{ and } b = __{12} V.$$

(b) Instead, suppose that $R_3 = 12 \text{ k}\Omega$ and $v_a = 3 \text{ V}$. Determine the values of *m* and *b*:

$$m = __5 __V/V$$
 and $b = __8 __V$.

(c) Instead, suppose that we require $v_0 = 4 v_s + 7$. Determine the required values of R_3 and v_a :

$$R_3 = __15__k\Omega \text{ and } v_a = __3__V.$$

Solution:

(a) From the given data:

$$\begin{array}{c} 18 = m(1) + b \\ 6 = m(-1) + b \end{array} \implies 18 + 6 = m - m + 2b \implies b = \frac{24}{2} = 12 \\ 18 = m(1) + 12 \implies m = 6 \end{array}$$

Then

Writing node equations at the inverting input nodes of the op amps gives:

$$\frac{v_{s}}{10} + \frac{v_{b}}{30} = 0 \implies v_{b} = -3v_{s} \text{ and } \frac{v_{b} - v_{a}}{R_{3}} + \frac{v_{o} - v_{a}}{20} = 0 \implies v_{o} = -\frac{20}{R_{3}}v_{b} + \left(1 + \frac{20}{R_{3}}\right)v_{a}$$
So
$$v_{o} = -\frac{20}{R_{3}}\left(-3v_{s}\right) + \left(1 + \frac{20}{R_{3}}\right)v_{a} = \frac{60}{R_{3}}v_{s} + \left(1 + \frac{20}{R_{3}}\right)v_{a}$$
(b) Substituting values gives $v_{o} = \frac{60}{12}v_{s} + \left(1 + \frac{20}{12}\right)(3) = 5v_{s} + 8$

(c) Comparing coefficients gives

$$4 = \frac{60}{R_3} \implies R_3 = 15 \ \Omega \quad \text{and} \quad 7 = \left(1 + \frac{20}{R_3}\right) v_a = \left(1 + \frac{20}{15}\right) v_a = \frac{7}{3} v_a \implies v_a = 3 \ V$$

4. The input to this circuit is the voltage: $v(t) = 4e^{-20t}$ V for t > 0

The output is the current: $i(t) = -1.2 e^{-20t} - 1.5$ A for t > 0

The initial condition is $i_{\rm L}(0) = -3.5$ A. Determine the values of the resistance and inductance:

 $R = __5__\Omega$ and $L = __0.1__H$.

Solution: Apply KCL at either node to get

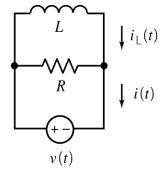
$$i(t) = \frac{v(t)}{R} + i_{\mathrm{L}}(t) = \frac{v(t)}{R} + \left[\frac{1}{L}\int_{0}^{t}v(\tau)d\tau + i(0)\right]$$

That is

$$-1.2 e^{-20t} - 1.5 = \frac{4 e^{-20t}}{R} + \frac{1}{L} \int_0^t 4 e^{-20\tau} d\tau - 3.5 = \frac{4 e^{-20t}}{R} + \frac{4}{L(-20)} \left(e^{-20t} - 1 \right) - 3.5$$
$$= \left(\frac{4}{R} - \frac{1}{5L} \right) e^{-20t} + \frac{1}{5L} - 3.5$$

Equating coefficients gives $-1.5 = \frac{1}{5L} - 3.5 \implies L = 0.1 \text{ H}$

And
$$-1.2 = \frac{4}{R} - \frac{1}{5L} = \frac{4}{R} - \frac{1}{5(0.1)} = \frac{4}{R} - 2 \implies R = 5 \Omega$$



5. After time t = 0, a given circuit is represented by this circuit diagram.

a. Suppose that the inductor current is

$$i(t) = 21.6 + 28.4 e^{-4t}$$
 mA for $t \ge 0$

Determine the values of R_1 and R_3 : $R_1 = __6__\Omega$ and $R_3 = __40__\Omega$.

b. Suppose instead that $R_1 = 16 \Omega$, $R_3 = 20 \Omega$, the initial condition is i(0) = 10 mA, and the inductor current is $i(t) = A + B e^{-at}$ for $t \ge 0$. Determine the values of the constants A, B, and a:

 $A = __28.8$ mA, $B = __{-18.8}$ mA and $a = __5$ s.

Solution:

The inductor current is given by $i(t) = i_{sc} + (i(0) - i_{sc})e^{-at}$ for $t \ge 0$ where $a = \frac{1}{\tau} = \frac{R_t}{L}$. **a**. Comparing this to the given equation gives $21.6 = i_{sc} = \frac{R_1}{R_1 + 4}(36) \implies R_1 = 6 \Omega$ and $4 = \frac{R_t}{2} \implies R_t = 8 \Omega$. Next $8 = R_t = (R_1 + 4) || R_3 = 10 || R_3 \implies R_3 = 40 \Omega$.

b.
$$R_t = (16+4) || 20 = 10 \ \Omega$$
 so $a = \frac{1}{\tau} = \frac{10}{2} = 5 \text{ s. also } i_{\text{sc}} = \frac{16}{16+4} (36) = 28.8 \text{ mA}$. Then $i(t) = i_{\text{sc}} + (i(0) - i_{\text{sc}})e^{-at} = 28.8 + (10 - 28.8)e^{-5t} = 28.8 - 18.8e^{-5t}$.

6. a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

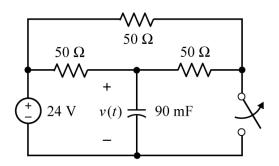
 $\tau = ___3__$ s and $v(\infty) = __24__V$

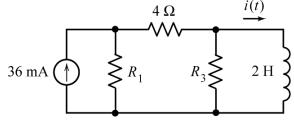
b) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **closed**:

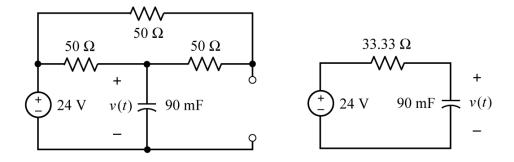
 $\tau = 2.25$ s and $v(\infty) = 12$ V

Solution:

a.) When the switch is open we have



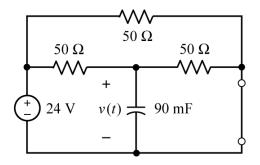




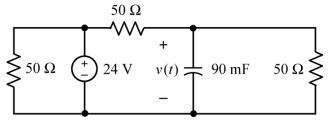
After replacing series and parallel resistors by equivalent resistors, the part of the circuit connected to the capacitor is a Thevenin equivalent circuit with $R_t = 33.33 \Omega$. The time constant is $\tau = R_t C = 33.33 (0.090) = 3 \text{ s}$.

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 33.33 Ω resistor and KVL gives $v(\infty) = 24$ V.

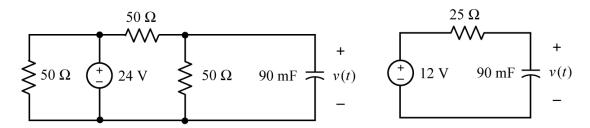
b.) When the switch is closed we have



This circuit can be redrawn as



Now we find the Thevenin equivalent of the part of the circuit connected to the capacitor:

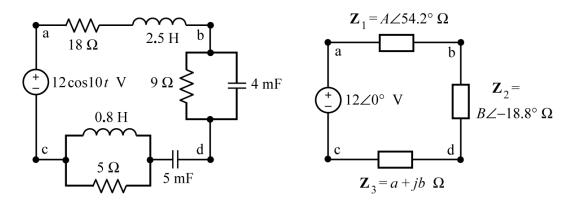


So $R_{\rm t} = 25 \,\Omega$ and

$$\tau = R_{\rm t} C = 25(0.090) = 2.25 {\rm s}$$

Since the input is constant, the capacitor acts like an open circuit when the circuit is at steady state. Consequently, there is zero current in the 25 Ω resistor and KVL gives $v(\infty) = 12$ V.

7. Here is an ac circuit represented in both the time domain and the frequency domain:



Determine the values of A, B, a and b.

$$A = _30.8$$
 V, $B = _8.47$ Ω , $a = _3.57$ Ω and $b = _-17.75$ Ω .

Solution:

The impedance between nodes a and b is given by

$$18 + j(10)(2.5) = 18 + j25 = 30.8 \angle 54.2^{\circ}$$

To find the impedance between nodes b and c we first find the impedance of the capacitor:

$$-j\frac{1}{(10)(0.004)} = -j\frac{1}{0.04} = -j25$$

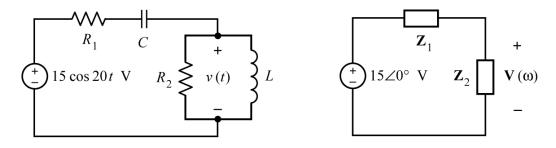
then

$$\frac{9(-j25)}{9-j25} = \frac{-j225}{26.57\angle -70.2^{\circ}} = \frac{225\angle -90^{\circ}}{26.57\angle -70.2^{\circ}} = 8.47\angle -18.8^{\circ} \Omega$$

The impedance between nodes c and d is given by

$$\frac{(5)(j(10)(0.88))}{5+j(10)(0.8)} - j\frac{1}{(10)(0.005)} = \frac{j40}{5+j8} - j\frac{1}{0.05} = \frac{j40}{5+j8} \left(\frac{5-j8}{5-j8}\right) - j20$$
$$= \frac{320+j200}{25+64} - j20$$
$$= 3.60 + j2.25 - j20 = 3.60 - j17.75 \ \Omega$$

8. Here is an ac circuit represented in both the time domain and the frequency domain:



Given that $\mathbf{Z}_1 = 15.3 \angle -24.1^{\circ} \Omega$, $\mathbf{Z}_2 = 14.4 \angle 36.9^{\circ} \Omega$ and $\mathbf{V}(\omega) = A \angle 31.5^{\circ} V$, determine the values of A, R_1 , R_2 , L and C.

$$A = _8.43$$
_____V, $R_1 = _14$ ____Q, $R_2 = __24$ ____Q, $L = __0.9$ ___H and $C = __8$ ____mF.

Solution:

Consider Z_1 :

$$R_1 - j\frac{1}{20C} = 15.3\angle -24.1^\circ = 14 - j6.25 \implies R_1 = 14\ \Omega \text{ and } C = \frac{1}{20(6.25)} = 0.008\ \text{F} = 8\ \text{mF}$$

Next consider \mathbf{Z}_2 :

$$\frac{1}{\frac{1}{R_2} + \frac{1}{j20L}} = 14.4\angle 53.1^\circ \implies \frac{1}{R_2} + \frac{1}{j20L} = \frac{1}{14.4\angle 53.1^\circ} = \frac{1}{14.4}\angle -53.1 = 0.04167 - j0.05556$$

Equating coefficients gives

$$R_2 = \frac{1}{0.04167} = 24 \ \Omega$$
 and $L = \frac{1}{20(0.05556)} = 0.9 \ H$

Next, consider the voltage divider:

$$A \angle 31.5^{\circ} = \frac{14.4 \angle 36.9^{\circ}}{15.3 \angle -24.1^{\circ} + 14.4 \angle 36.9^{\circ}} (15 \angle 0^{\circ}) = \frac{(15)(14.4) \angle 36.9^{\circ}}{(14 - j6.25)(11.52 + j8.64)}$$
$$= \frac{216 \angle 36.9^{\circ}}{25.52 + j2.39}$$
$$= \frac{216 \angle 36.9^{\circ}}{25.63 \angle 5.4^{\circ}} = 8.43 \angle 31.5^{\circ} \text{ V}$$