ES 250 Practice Final Exam

1. Given that

$$
v_{\mathrm{a}}=8 \mathrm{~V},
$$

Determine the values of R_{1} and v_{0} :

$$
R_{1}=_10 _\Omega,
$$

and

$$
v_{\mathrm{o}}=_-3.2 _\mathrm{V}
$$

10 V

$$
v_{\mathrm{o}}=-\frac{20}{20+30} 8=-3.2 \mathrm{~V}
$$

Next,

$$
\frac{8}{20}=i_{\mathrm{b}}=\frac{40}{40+R_{1}} i_{\mathrm{c}}=\frac{40}{40+R_{1}}\left(\frac{10}{12+40 \| R_{1}}\right)=\frac{40}{40+R_{1}}\left(\frac{10}{12+\frac{40 R_{1}}{40+R_{1}}}\right)=\frac{400}{12\left(40+R_{1}\right)+40 R_{1}}=\frac{400}{480+52 R_{1}}
$$

Then $\quad \frac{8}{20}=\frac{400}{480+52 R_{1}} \Rightarrow 480+52 R_{1}=\frac{400(20)}{8}=1000 \Rightarrow \frac{1000-480}{52}=10 \Omega$
2. Given that $0 \leq R \leq \infty$ in this circuit, consider these two observations:
When $R=2 \Omega$ then $v_{\mathrm{R}}=4 \mathrm{~V}$ and $i_{\mathrm{R}}=2 \mathrm{~A}$.
When $R=6 \Omega$ then $v_{\mathrm{R}}=6 \mathrm{~V}$ and $i_{\mathrm{R}}=1 \mathrm{~A}$.
Fill in the blanks in the following statements:

a. The maximum value of i_{R} is \qquad 4 \qquad A.
b. The maximum value of v_{R} is \qquad 8 \qquad V.
c. The maximum value of $p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}$ occurs when $R=$ \qquad 2 \qquad Ω.
d. The maximum value of $p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}$ is \qquad 8 \qquad W.

We can replace the part of the circuit to the left of the terminals by its Thevenin equivalent circuit:

Using voltage division $v_{\mathrm{R}}=\frac{R}{R+R_{\mathrm{t}}} v_{\mathrm{oc}}$ and using Ohm's law $i_{\mathrm{R}}=\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}$.
By inspection, $v_{\mathrm{R}}=\frac{R}{R+R_{\mathrm{t}}} v_{\mathrm{oc}}=\frac{v_{\mathrm{oc}}}{1+\frac{R_{\mathrm{t}}}{R}}$ will be maximum when $R=\infty$. The
maximum value of v_{R} will be v_{oc}. Similarly, $i_{\mathrm{R}}=\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}$ will be

$$
\text { maximum when } R=0 \text {. The maximum value of } i_{\mathrm{R}} \text { will be } \frac{v_{\mathrm{oc}}}{R_{\mathrm{t}}}=i_{\mathrm{sc}} \text {. }
$$

The maximum power transfer theorem tells use that $p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}$ will be maximum when $R=R_{\mathrm{t}}$. Then
$p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}=\left(\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}\right)\left(\frac{R}{R+R_{\mathrm{t}}} v_{\mathrm{oc}}\right)=R\left(\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}\right)^{2}$.
Let's substitute the given data into the equation $i_{\mathrm{R}}=\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}$.
When $R=2 \Omega$ we get $2=\frac{v_{\mathrm{oc}}}{2+R_{\mathrm{t}}} \Rightarrow 4+2 R_{\mathrm{t}}=v_{\mathrm{oc}}$. When $R=6 \Omega$ we get $1=\frac{v_{\mathrm{oc}}}{6+R_{\mathrm{t}}} \Rightarrow 6+R_{\mathrm{t}}=v_{\mathrm{oc}}$.
So $6+R_{\mathrm{t}}=4+2 R_{\mathrm{t}} \Rightarrow R_{\mathrm{t}}=2 \Omega$ and $v_{\mathrm{oc}}=4+2 R_{\mathrm{t}}=8 \mathrm{~V}$. Also $i_{\mathrm{sc}}=\frac{v_{\mathrm{oc}}}{R_{\mathrm{t}}}=\frac{8}{2}=4 \mathrm{~A}$.
Now the blanks can be easily filled-in.
3.

The input to this circuit is the voltage, v_{s}. The output is the voltage v_{o}. The voltage v_{b} is used to adjust the relationship between the input and output. Determine values of R_{4} and v_{b} that cause the circuit input and output have the relationship specified by the graph

$$
v_{\mathrm{b}}=_1.62 _\mathrm{V} \text { and } R_{4}=_62.5 _\mathrm{k} \Omega .
$$

Recognize the voltage divider, voltage follower and noninverting amplifier to write

$$
v_{\mathrm{o}}=\left(\frac{20 \times 10^{3}}{20 \times 10^{3}+5 \times 10^{3}}\right)\left(-\frac{R_{4}}{30 \times 10^{3}}\right) v_{\mathrm{s}}+\left(1+\frac{R_{4}}{30 \times 10^{3}}\right) v_{\mathrm{b}}=\left(-\frac{2 R_{4}}{75 \times 10^{3}}\right) v_{\mathrm{s}}+\left(1+\frac{R_{4}}{30 \times 10^{3}}\right) v_{\mathrm{b}}
$$

(Alternately, this equation can be obtained by writing two node equations: one at the noninverting node of the left op amp and the other at the inverting node of the right op amp.)

The equation of the straight line is $\quad v_{0}=-\frac{5}{3} v_{\mathrm{s}}+5$
Comparing coefficients gives

$$
-\frac{2 R_{4}}{75 \times 10^{3}}=-\frac{5}{3} \Rightarrow R_{4}=\frac{5}{3} \times \frac{75 \times 10^{3}}{2}=62.5 \times 10^{3}=62.5 \mathrm{k} \Omega
$$

and

$$
5=\left(1+\frac{R_{4}}{30 \times 10^{3}}\right) v_{\mathrm{b}}=\left(1+\frac{62.5 \times 10^{3}}{30 \times 10^{3}}\right) v_{\mathrm{b}}=3.08333 v_{\mathrm{b}} \Rightarrow v_{\mathrm{b}}=\frac{5}{3.08333}=1.62 \mathrm{~V}
$$

4. Consider this inductor. The current and voltage are given by

$$
i(t)=\left\{\begin{array}{cc}
5 t-4.6 & 0 \leq t \leq 0.2 \\
a t+b & 0.2 \leq t \leq 0.5 \\
c & t \geq 0.5
\end{array} \text { and } \quad v(t)=\left\{\begin{array}{ccc}
12.5 & 0<t<0.2 \\
25 & 0.2<t<0.5 & v(t) \\
0 & t>0.5 & -
\end{array}\right\} L=2.5 \mathrm{H}\right.
$$

where a, b and c are real constants. (The current is given in Amps, the voltage in Volts and the time in seconds.) Determine the values of the constants:

$$
a=\ldots \quad 10 __\mathrm{A} / \mathrm{s}, \quad b=\ldots-5.6 \ldots \mathrm{~A} \text { and } c=\ldots-0.6 \ldots \mathrm{~A}
$$

At $t=0.2 \mathrm{~s}$

$$
i(0.2)=5(0.2)-4.6=-3.6 \mathrm{~A}
$$

For $0.2 \leq t \leq 0.5$

$$
i(t)=\frac{1}{2.5} \int_{0.2}^{t} 25 d \tau-3.6=\left.10 \tau\right|_{0.2} ^{t}-3.6=10(t-0.2)-3.6=10 t-5.6 \mathrm{~A}
$$

At $t=0.5 \mathrm{~s}$

$$
i(0.5)=10(0.5)-5.6=-0.6 \mathrm{~A}
$$

For $t \geq 0.5$

$$
i(t)=\frac{1}{2.5} \int_{0.5}^{t} 0 d \tau-0.6=-0.6
$$

Checks:
At $t=0.2 \mathrm{~s}$

$$
i(0.2)=10(0.2)-5.6=-3.6 \mathrm{~A}
$$

For $0.2 \leq t \leq 0.5 \quad v(t)=2.5 \frac{d}{d t} i(t)=2.5 \frac{d}{d t}(10 t-5.6)=2.5(10)=25 \mathrm{~V}$

$$
-0.6-(-3.6)=i(0.5)-i(0.2)=\frac{1}{2.5} \int_{0.2}^{0.5} 25 d \tau=10(0.5-0.2)=3 \mathrm{~A} \quad \sqrt{ }
$$

5. This circuit is at steady state when the switch opens at time $t=0$.

The capacitor voltage is $v(t)=A+B e^{-a t}$ for $t \geq 0$. Determine the values of the constants A, B, and a :

$$
A=_4 _\mathrm{V}, \quad B=_8 _\mathrm{V} \text { and } a=_10 _\mathrm{s} .
$$

Solution:

Before $t=0$, with the switch closed and the circuit at the steady state, the capacitor acts like an open circuit so we have

Using superposition

$$
v(0-)=\frac{60 \| 60}{30+(60 \| 60)} 6+\frac{60 \| 30}{60+(60 \| 30)} 36=\left(\frac{1}{2}\right) 6+\left(\frac{1}{4}\right) 36=12 \mathrm{~V}
$$

The capacitor voltage is continuous so $v(0+)=v(0-)=12 \mathrm{~V}$.
After $t=0$ the switch is open. Determine the Thevenin equivalent circuit for the part of the circuit connected to the capacitor:

$$
\begin{aligned}
& v_{\text {oc }}=\frac{60}{60+30} 6=4 \mathrm{~V} \\
& R_{\mathrm{t}}=30 \| 60=20 \mathrm{k} \Omega
\end{aligned}
$$

The time constant is $\tau=R_{\mathrm{t}} C=\left(20 \times 10^{3}\right)\left(5 \times 10^{-6}\right)=0.1 \mathrm{~s}$ so $\frac{1}{\tau}=10 \frac{1}{\mathrm{~s}}$.
The capacitor voltage is given by

$$
v(t)=\left(v(0+)-v_{\mathrm{oc}}\right) e^{-t / \tau}+v_{\mathrm{oc}}=(12-4) e^{-10 t}+4=4+8 e^{-10 t} \mathrm{~V} \quad \text { for } t \geq 0
$$

6. This circuit is at steady state before the switch closes at time $t=0$. After the switch closes, the inductor current is given by

$$
i(t)=0.6-0.2 e^{-5 t} \quad \mathrm{~A} \quad \text { for } t \geq 0
$$

Determine the values of R_{1}, R_{2} and L :

$$
R_{1}=_20 _\Omega, R_{2}=_10 _\Omega
$$

and

$$
L=_4 _\mathrm{H}
$$

Solution:

The steady state current before the switch closes is equal to

$$
i(0)=0.6-0.2 e^{-5(0)}=0.4 \mathrm{~A} .
$$

The inductor will act like a short circuit when this circuit is at steady state so

$$
0.4=i(0)=\frac{12}{R_{1}+R_{2}} \Rightarrow R_{1}+R_{2}=30 \Omega
$$

After the switch has been open for a long time, the circuit will again be at steady state. The steady state inductor current will be

$$
i(\infty)=0.6-0.2 e^{-5(\infty)}=0.6 \mathrm{~A}
$$

The inductor will act like a short circuit when this circuit is at steady state so

$$
0.6=i(\infty)=\frac{12}{R_{1}} \Rightarrow R_{1}=20 \Omega
$$

Then $R_{2}=10 \Omega$.

After the switch is closed, the Thevenin resistance of the part of the circuit connected to the inductor is $R_{\mathrm{t}}=R_{1}$. Then

$$
5=\frac{1}{\tau}=\frac{R_{\mathrm{t}}}{L}=\frac{R_{1}}{L}=\frac{20}{L} \Rightarrow L=4 \mathrm{H}
$$

7. The voltage and current for this circuit are given by

$$
v(t)=20 \cos \left(20 t+15^{\circ}\right) \mathrm{V} \quad \text { and } \quad i(t)=1.49 \cos \left(20 t+63^{\circ}\right) \mathrm{A}
$$

Determine the values of the resistance, R, and capacitance, C :

$$
R=_\quad 9 \quad \Omega \text { and } C=\left[5 _\mathrm{mF} .\right.
$$

Solution:

In the frequency domain we have:

$$
R-j \frac{1}{20 C}=\mathbf{Z}=\frac{\mathbf{V}}{\mathbf{I}}=\frac{20 \angle 15^{\circ}}{1.49 \angle 63^{\circ}}=\frac{20}{1.49} \angle\left(15^{\circ}-63^{\circ}\right)=13.42 \angle-48^{\circ}=8.98-j 9.97 \Omega
$$

Equating real and imaginary parts gives $R=9 \Omega$ and $C=\frac{1}{20 \times 9.97}=5 \mathrm{mF}$.
8.

This circuit is at steady state. The voltage source voltages are given by

$$
v_{1}(t)=12 \cos \left(2 t-90^{\circ}\right) \mathrm{V} \text { and } v_{2}(t)=5 \cos \left(2 t+90^{\circ}\right) \mathrm{V}
$$

The currents are given by

$$
i_{1}(t)=744 \cos \left(2 t-118^{\circ}\right) \mathrm{mA}, i_{2}(t)=540.5 \cos \left(2 t+100^{\circ}\right) \mathrm{mA} \text { and } i(t)=A \cos \left(2 t-164^{\circ}\right) \mathrm{mA}
$$

Determine the values of A, R_{1}, R_{2}, L and C :

$$
A=_460 _\mathrm{mA}, R_{1}=_10 _\Omega, R_{2}=_10 _\Omega, L=_6 _\mathrm{H} \text { and } C=_50 _\mathrm{mF} .
$$

Solution:

Represent the circuit in the frequency domain using impedances and phasors:

$$
\begin{aligned}
& \mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{2}=0.744 \angle-118^{\circ}+0.5405 \angle 100=(-0.349-j 0.657)+(-0.094+j 0.532) \\
&=(-0.349-0.094)+j(-0.657+0.532) \\
&=-0.443-j 0.125 \\
&=0.460 \angle-164^{\circ} \\
& i(t)=460 \cos \left(2 t-164^{\circ}\right) \mathrm{mA}
\end{aligned}
$$

Replacing series impedances by equivalent impedances gives

$$
\mathbf{Z}_{1}=R_{1}+j \omega L
$$

and

$$
\mathbf{Z}_{2}=R_{2}-j \frac{1}{\omega C}
$$

From KVL

$$
\begin{aligned}
\mathbf{Z}_{1} \mathbf{I}_{1}+10 \mathbf{I}-\mathbf{V}_{1}=0 \Rightarrow \mathbf{Z}_{1}=\frac{\mathbf{V}_{1}-10 \mathbf{I}}{\mathbf{I}_{1}} & =\frac{12 \angle-90^{\circ}-10\left(0.460 \angle-164^{\circ}\right)}{0.744 \angle-118^{\circ}} \\
& =\frac{-j 12-10(-0.443-j 0.125)}{0.744 \angle-118^{\circ}} \\
& =\frac{4.43-j 10.75}{0.744 \angle-118^{\circ}}=\frac{11.63 \angle-67.6^{\circ}}{0.744 \angle-118^{\circ}} \\
& =15.63 \angle 50.4^{\circ} \\
& =10+j 12 \Omega
\end{aligned}
$$

and

$$
\begin{aligned}
-\mathbf{Z}_{2} \mathbf{I}_{2}+\mathbf{V}_{2}-10 \mathbf{I}=0 \Rightarrow \mathbf{Z}_{2}=\frac{\mathbf{V}_{2}-10 \mathbf{I}}{\mathbf{I}_{2}} & =\frac{5 \angle 90^{\circ}-10\left(0.460 \angle-164^{\circ}\right)}{0.5405 \angle 100^{\circ}} \\
& =\frac{j 5-10(-0.443-j 0.125)}{0.5405 \angle 100^{\circ}} \\
& =\frac{4.43+j 6.25}{0.5405 \angle 100^{\circ}}=\frac{7.66 \angle 54.7^{\circ}}{0.5405 \angle 100^{\circ}} \\
& =14.14 \angle-55.3^{\circ} \\
& =10-j 10 \Omega
\end{aligned}
$$

Next

$$
10+j 12=R_{1}+j \omega L=R_{1}+j 2 L \Rightarrow R_{1}=10 \Omega \text { and } L=\frac{12}{2}=6 \mathrm{H}
$$

and

$$
10-j 10=R_{2}-j \frac{1}{\omega C}=R_{2}-j \frac{1}{2 C} \Rightarrow R_{2}=10 \Omega \text { and } C=\frac{1}{2(10)}=0.05 \mathrm{~F}
$$

9. The input this circuit is the current

$$
i_{\mathrm{s}}(t)=2 \cos \left(5 t+15^{\circ}\right) \mathrm{A} .
$$

In the frequency domain, this circuit is represented by the node equation

$$
\left[\begin{array}{cc}
d+j 0.5 & -j 0.5 \\
-j 0.5 & 0.25+j e
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{\mathrm{a}} \\
\mathbf{V}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{c}
2 \angle 15^{\circ} \\
0
\end{array}\right]
$$

where \mathbf{V}_{a} and \mathbf{V}_{b} are the phasor node voltages and d and e are real numbers. Determine the values of d and e.

$$
d=_0.125 _\Omega \text { and } e=_-3.5 \Omega \Omega
$$

Solution: Represent the circuit in the frequency domain using impedances and phasors:

Apply KCL at node a to get

$$
2 \angle 15^{\circ}=\frac{\mathbf{V}_{\mathrm{a}}}{8}+\frac{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{b}}}{-j 2}=(0.125+j 0.5) \mathbf{V}_{\mathrm{a}}-(j 0.5) \mathbf{V}_{\mathrm{b}}
$$

Apply KCL at node b to get

$$
\begin{aligned}
\frac{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{b}}}{-j 2}=\frac{\mathbf{V}_{\mathrm{b}}}{4}+\frac{\mathbf{V}_{\mathrm{b}}}{j 0.25} & \Rightarrow j 0.5\left(\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{b}}\right)=(0.25-j 4) \mathbf{V}_{\mathrm{b}} \\
& \Rightarrow 0=-j 0.5 \mathbf{V}_{\mathrm{a}}+(0.25-j 3.5) \mathbf{V}_{\mathrm{b}}
\end{aligned}
$$

Organize these equations into matrix form to get

$$
\left[\begin{array}{cc}
0.125+j 0.5 & -j 0.5 \\
-j 0.5 & 0.25-j 3.5
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{\mathrm{a}} \\
\mathbf{V}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{c}
2 \angle 15^{\circ} \\
0
\end{array}\right]
$$

Compare this equation to the given node equation to see that $d=0.125 \Omega$ and $e=-3.5 \Omega$.

