Another Sample ES 250 Final Exam

1. This circuit has two inputs, v_s and i_s , and one output i_o . The output is related to the inputs by the equation

$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$

Given the following two facts:

and

The output is $i_0 = 0.30$ A when the inputs are $i_s = 0.50$ A and $v_s = 0$ V.

Determine the following:

2. Determine the values of the node voltages v_a , v_b , v_c and v_o :

 R_1

 $v_{\rm s}$

i_s

i_o

 $\leq R_2$

The input to this circuit is the voltage v_s . The output is the node voltage v_o . The output is related to the input by the equation $v_o = mv_s + b$ where *m* and *b* are constants.

(a) Suppose $v_0 = 18$ V when $v_s = 1$ V and $v_0 = 6$ V when $v_s = -1$ V. Determine the values of *m* and *b*:

 $m = __V/V$ and $b = __V.$

(b) Instead, suppose that $R_3 = 12 \text{ k}\Omega$ and $v_a = 3 \text{ V}$. Determine the values of *m* and *b*:

 $m = __V/V$ and $b = __V.$

(c) Instead, suppose that we require $v_0 = 4 v_s + 7$. Determine the required values of R_3 and v_a :

 $R_3 = __k\Omega$ and $v_a = __V$.

4. The input to this circuit is the voltage: $v(t) = 4e^{-20t}$ V for t > 0

The output is the current: $i(t) = -1.2 e^{-20t} - 1.5$ A for t > 0

The initial condition is $i_{\rm L}(0) = -3.5$ A. Determine the values of the resistance and inductance:

 $R = _ \Omega$ and $L = _ H$.

5. After time t = 0, a given circuit is represented by this circuit diagram.

a. Suppose that the inductor current is

$$i(t) = 21.6 + 28.4 e^{-4t}$$
 mA for $t \ge 0$

Determine the values of R_1 and R_3 : $R_1 = _ \ \Omega$ and $R_3 = _ \ \Omega$.

and $v(\infty) = V$

b. Suppose instead that $R_1 = 16 \Omega$, $R_3 = 20 \Omega$, the initial condition is i(0) = 10 mA, and the inductor current is $i(t) = A + Be^{-at}$ for $t \ge 0$. Determine the values of the constants A, B, and a:

36 mA (

 $A = _$ mA, $B = _$ mA and $a = _$ s.

6. a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

$$\tau = ____s$$

b) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **closed**:

 $\tau = _$ s and $v(\infty) = _$ V

 $\begin{array}{c|c} & & & & & \\ & & 50 \ \Omega \\ & & 50 \ \Omega \\ \hline & 50 \ \Omega \\ & & & 50 \ \Omega \\ & & & \\ & & & \\ \end{array}$

4Ω

 R_1

R₃<

i(t)

2 H

7. Here is an ac circuit represented in both the time domain and the frequency domain:

Determine the values of A, B, a and b.

 $A = _$ $\nabla, B = _$ $\Omega, a = _$ $\Omega \text{ and } b = _$ $\Omega.$

8. Here is an ac circuit represented in both the time domain and the frequency domain:

Given that $\mathbf{Z}_1 = 15.3 \angle -24.1^{\circ} \Omega$, $\mathbf{Z}_2 = 14.4 \angle 36.9^{\circ} \Omega$ and $\mathbf{V}(\omega) = A \angle 31.5^{\circ} V$, determine the values of A, R_1 , R_2 , L and C.

A =_____ V, $R_1 =$ _____ Ω , $R_2 =$ _____ Ω , L =_____ H and C =_____ mF.