Another Sample ES 250 Final Exam

1. This circuit has two inputs, v_s and i_s , and one output i_o . The output is related to the inputs by the equation

$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$

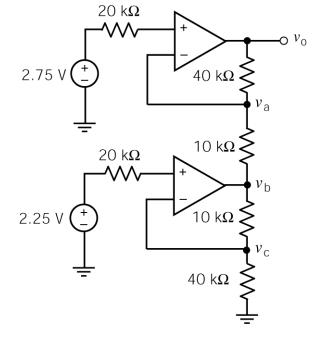
Given the following two facts:

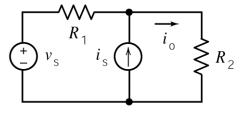
and

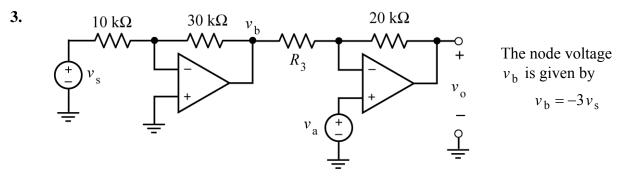
The output is $i_0 = 0.45$ A when the inputs are $i_s = 0.25$ A and $v_s = 15$ V.

The output is $i_0 = 0.30$ A when the inputs are $i_s = 0.50$ A and $v_s = 0$ V.

Determine the following:


The values of the constants a and b are $a = _0.6$ and $b = _0.02$ A/V.


The values of the resistances are $R_1 = __30__\Omega$ and $R_2 = __20__\Omega$.


2. Determine the values of the node voltages v_a , v_b , v_c and v_o :

$$v_a = _2.75_V, v_b = _2.8125_V,$$

$$v_{\rm c} = _2.25$$
____V, and $v_{\rm o} = _2.50$ ____V.

The input to this circuit is the voltage v_s . The output is the node voltage v_o . The output is related to the input by the equation $v_o = m v_s + b$ where *m* and *b* are constants.

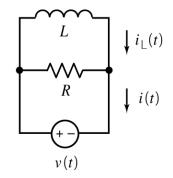
(a) Suppose $v_0 = 18$ V when $v_s = 1$ V and $v_0 = 6$ V when $v_s = -1$ V. Determine the values of *m* and *b*:

$$m = __6 __V/V$$
 and $b = __12 __V$.

(b) Instead, suppose that $R_3 = 12 \text{ k}\Omega$ and $v_a = 3 \text{ V}$. Determine the values of *m* and *b*:

$$m = __5 __V/V$$
 and $b = __8 __V$.

(c) Instead, suppose that we require $v_0 = 4 v_s + 7$. Determine the required values of R_3 and v_a :


$$R_3 = __15__k\Omega \text{ and } v_a = __3__V.$$

4. The input to this circuit is the voltage: $v(t) = 4e^{-20t}$ V for t > 0

The output is the current: $i(t) = -1.2 e^{-20t} - 1.5$ A for t > 0

The initial condition is $i_{\rm L}(0) = -3.5$ A. Determine the values of the resistance and inductance:

$$R = __5 __\Omega$$
 and $L = __0.1 __H$.

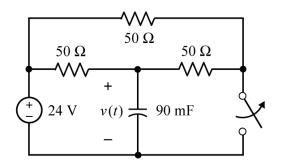
5. After time t = 0, a given circuit is represented by this circuit diagram.

a. Suppose that the inductor current is

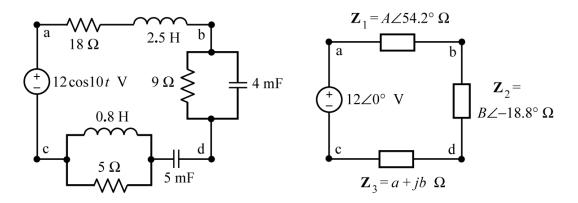
$$i(t) = 21.6 + 28.4 e^{-4t}$$
 mA for $t \ge 0$

Determine the values of R_1 and R_3 : $R_1 = __6 __\Omega$ and $R_3 = __40 __\Omega$.

b. Suppose instead that $R_1 = 16 \Omega$, $R_3 = 20 \Omega$, the initial condition is i(0) = 10 mA, and the inductor current is $i(t) = A + Be^{-at}$ for $t \ge 0$. Determine the values of the constants A, B, and a:

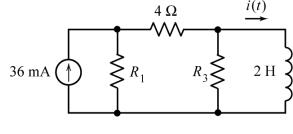

 $A = __{28.8} \text{ mA}, B = __{-18.8} \text{ mA} \text{ and } a = __{5} \text{ s.}$

6. a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

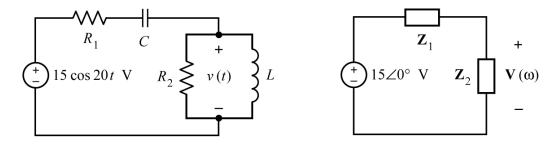

 $\tau = __3__s$ and $v(\infty) = __24__V$

b) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **closed**:

 $\tau = _2.25_s$ and $v(\infty) = _12_V$



7. Here is an ac circuit represented in both the time domain and the frequency domain:



Determine the values of A, B, a and b.

 $A = _30.8$ V, $B = _8.47$ Ω , $a = _3.57$ Ω and $b = _-17.75$ Ω .

8. Here is an ac circuit represented in both the time domain and the frequency domain:

Given that $\mathbf{Z}_1 = 15.3 \angle -24.1^\circ \Omega$, $\mathbf{Z}_2 = 14.4 \angle 36.9^\circ \Omega$ and $\mathbf{V}(\omega) = A \angle 31.5^\circ V$, determine the values of A, R_1 , R_2 , L and C.

$$A = _8.43$$
 V, $R_1 = _14$ Ω , $R_2 = _24$ Ω , $L = _0.9$ H and $C = _8$ mF.