ES 250 Practice Final Exam

1. Given that

$$v_a = 8 \text{ V}$$
,

Determine the values of R_1 and v_0 :

$$R_1 = \underline{\hspace{1cm}} 10 \underline{\hspace{1cm}} \Omega,$$

and

$$v_0 = _- -3.2 _- V$$

2. Given that $0 \le R \le \infty$ in this circuit, consider these two observations:

When $R = 2 \Omega$ then $v_R = 4 \text{ V}$ and $i_R = 2 \text{ A}$.

When $R = 6 \Omega$ then $v_R = 6 V$ and $i_R = 1 A$.

Fill in the blanks in the following statements:

- a. The maximum value of i_R is ____4___A.
- b. The maximum value of v_R is ____8___V.
- c. The maximum value of $p_R = i_R v_R$ occurs when $R = \underline{\qquad} 2\underline{\qquad} \Omega$.
- d. The maximum value of $p_R = i_R v_R$ is _____8___W.

The input to this circuit is the voltage, v_s . The output is the voltage v_o . The voltage v_b is used to adjust the relationship between the input and output. Determine values of R_4 and v_b that cause the circuit input and output have the relationship specified by the graph

$$v_b = _{1.62} V \text{ and } R_4 = _{62.5} k\Omega.$$

4. Consider this inductor. The current and voltage are given by

Consider this inductor. The current and voltage are given by
$$i(t) = \begin{cases} 5t - 4.6 & 0 \le t \le 0.2 \\ at + b & 0.2 \le t \le 0.5 \\ c & t \ge 0.5 \end{cases} \text{ and } v(t) = \begin{cases} 12.5 & 0 < t < 0.2 \\ 25 & 0.2 < t < 0.5 \\ 0 & t > 0.5 \end{cases}$$

$$t \ge 0.5$$

where a, b and c are real constants. (The current is given in Amps, the voltage in Volts and the time in seconds.) Determine the values of the constants:

$$a = ___10___A/s$$
, $b = ___-5.6___A$ and $c = ___-0.6__A$

5. This circuit is at steady state when the switch opens at time t = 0.

The capacitor voltage is $v(t) = A + Be^{-at}$ for $t \ge 0$. Determine the values of the constants A, B, and a:

$$A = ___4$$
 V, $B = __8$ V and $a = ___10$ s.

6. This circuit is at steady state before the switch closes at time t = 0. After the switch closes, the inductor current is given by

$$i(t) = 0.6 - 0.2e^{-5t}$$
 A for $t \ge 0$

Determine the values of R_1 , R_2 and L:

$$R_1 = \underline{} 20 \underline{} \Omega$$
, $R_2 = \underline{} 10 \underline{} \Omega$

and

$$L = _{4}$$
 H

7. The voltage and current for this circuit are given by

$$v(t) = 20 \cos (20t + 15^{\circ}) \text{ V}$$
 and $i(t) = 1.49 \cos (20t + 63^{\circ}) \text{ A}$

Determine the values of the resistance, R, and capacitance, C:

$$R = ___9 __ \Omega$$
 and $C = __5 __ mF$.

This circuit is at steady state. The voltage source voltages are given by

$$v_1(t) = 12 \cos(2t - 90^\circ) \text{ V}$$
 and $v_2(t) = 5 \cos(2t + 90^\circ) \text{ V}$

The currents are given by

$$i_1(t) = 744 \cos(2t - 118^\circ) \text{ mA}$$
, $i_2(t) = 540.5 \cos(2t + 100^\circ) \text{ mA}$ and $i(t) = A \cos(2t - 164^\circ) \text{ mA}$

Determine the values of A, R_1 , R_2 , L and C:

$$A = _460_{mA}$$
, $R_1 = _10_{\Omega}$, $R_2 = _10_{\Omega}$, $L = _6_{MA}$ H and $C = _50_{MA}$ mF.

9. The input this circuit is the current

$$i_{s}(t) = 2\cos(5t + 15^{\circ}) \text{ A}$$
.

In the frequency domain, this circuit is represented by the node equation

$$\begin{bmatrix} d+j0.5 & -j0.5 \\ -j0.5 & 0.25+je \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\mathbf{a}} \\ \mathbf{V}_{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} 2\angle 15^{\circ} \\ 0 \end{bmatrix}$$

where V_a and V_b are the phasor node voltages and d and e are real numbers. Determine the values of d and e.

$$d = \underline{} 0.125 \underline{} \Omega$$
 and $e = \underline{} -3.5 \underline{} \Omega$