ES 250 Practice Final Exam

1. Given that

$$
v_{\mathrm{a}}=8 \mathrm{~V},
$$

Determine the values of R_{1} and v_{o} :

$$
R_{1}=_10 _\Omega,
$$

and

$$
v_{\mathrm{o}}=_-3.2 _\mathrm{V}
$$

4Ω

10 V

$v_{\mathrm{a}}=20 i_{\mathrm{b}}$
2. Given that $0 \leq R \leq \infty$ in this circuit, consider these two observations:
When $R=2 \Omega$ then $v_{\mathrm{R}}=4 \mathrm{~V}$ and $i_{\mathrm{R}}=2 \mathrm{~A}$.
When $R=6 \Omega$ then $v_{\mathrm{R}}=6 \mathrm{~V}$ and $i_{\mathrm{R}}=1 \mathrm{~A}$.
Fill in the blanks in the following statements:

a. The maximum value of i_{R} is \qquad 4 \qquad A.
b. The maximum value of v_{R} is \qquad 8 \qquad V.
c. The maximum value of $p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}$ occurs when $R=$ \qquad 2 \qquad Ω.
d. The maximum value of $p_{\mathrm{R}}=i_{\mathrm{R}} v_{\mathrm{R}}$ is \qquad 8 \qquad W.
3.

The input to this circuit is the voltage, v_{s}. The output is the voltage v_{o}. The voltage v_{b} is used to adjust the relationship between the input and output. Determine values of R_{4} and v_{b} that cause the circuit input and output have the relationship specified by the graph
$v_{\mathrm{b}}=$ \qquad .62 \qquad V and $R_{4}=$ \qquad 62.5 \qquad $\mathrm{k} \Omega$.
4. Consider this inductor. The current and voltage are given by

$$
i(t)=\left\{\begin{array}{cc}
5 t-4.6 & 0 \leq t \leq 0.2 \\
a t+b & 0.2 \leq t \leq 0.5 \\
c & t \geq 0.5
\end{array} \text { and } \quad v(t)=\left\{\begin{array}{ccc}
12.5 & 0<t<0.2 \\
25 & 0.2<t<0.5 \\
0 & t>0.5
\end{array} \quad v(t)\{L=2.5 \mathrm{H}\right.\right.
$$

where a, b and c are real constants. (The current is given in Amps, the voltage in Volts and the time in seconds.) Determine the values of the constants:

$$
a=_10 __\mathrm{A} / \mathrm{s}, \quad b=_-5.6 \ldots \mathrm{~A} \text { and } c=_-0.6 _\mathrm{A}
$$

5. This circuit is at steady state when the switch opens at time $t=0$.

The capacitor voltage is $v(t)=A+B e^{-a t}$ for $t \geq 0$. Determine the values of the constants A, B, and a :

$$
A=_4 _\mathrm{V}, \quad B=_8 __\mathrm{V} \text { and } a=_\quad 10 _\mathrm{s} .
$$

6. This circuit is at steady state before the switch closes at time $t=0$. After the switch closes, the inductor current is given by

$$
i(t)=0.6-0.2 e^{-5 t} \quad \mathrm{~A} \quad \text { for } t \geq 0
$$

Determine the values of R_{1}, R_{2} and L :

$$
R_{1}=_20 _\Omega, R_{2}=_10 _\Omega
$$

and

$$
L=_4 _\mathrm{H}
$$

7. The voltage and current for this circuit are given by

$$
v(t)=20 \cos \left(20 t+15^{\circ}\right) \mathrm{V} \quad \text { and } \quad i(t)=1.49 \cos \left(20 t+63^{\circ}\right) \mathrm{A}
$$

Determine the values of the resistance, R, and capacitance, C :

$$
R=_\quad 9 _\Omega \text { and } C=_5 \quad \mathrm{mF} .
$$

8.

This circuit is at steady state. The voltage source voltages are given by

$$
v_{1}(t)=12 \cos \left(2 t-90^{\circ}\right) \mathrm{V} \text { and } v_{2}(t)=5 \cos \left(2 t+90^{\circ}\right) \mathrm{V}
$$

The currents are given by

$$
i_{1}(t)=744 \cos \left(2 t-118^{\circ}\right) \mathrm{mA}, i_{2}(t)=540.5 \cos \left(2 t+100^{\circ}\right) \mathrm{mA} \text { and } i(t)=A \cos \left(2 t-164^{\circ}\right) \mathrm{mA}
$$

Determine the values of A, R_{1}, R_{2}, L and C :

$$
A=_460 _\mathrm{mA}, R_{1}=_10 _\Omega, R_{2}=_10 _\Omega, L=_6 _\mathrm{H} \text { and } C=_50 _\mathrm{mF} \text {. }
$$

9. The input this circuit is the current

$$
i_{\mathrm{s}}(t)=2 \cos \left(5 t+15^{\circ}\right) \mathrm{A} .
$$

In the frequency domain, this circuit is represented by the node equation

$$
\left[\begin{array}{cc}
d+j 0.5 & -j 0.5 \\
-j 0.5 & 0.25+j e
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{\mathrm{a}} \\
\mathbf{V}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{c}
2 \angle 15^{\circ} \\
0
\end{array}\right]
$$

where \mathbf{V}_{a} and \mathbf{V}_{b} are the phasor node voltages and d and e are real numbers. Determine the values of d and e.

$$
d=_0.125 _\Omega \text { and } e=_-3.5 _\Omega
$$

