FIRST-ORDER CIRCUIT CONTAINING A CAPACITOR \quad FIRST-ORDER CIRCUIT CONTAINING AN INDUCTOR

The capacitor voltage is:

$$
v(t)=V_{\mathrm{oc}}+\left(v(0)-V_{\mathrm{oc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant is $\tau=R_{\mathrm{t}} C$
and the initial condition, $v(0)$, is the capacitor voltage at time $t=0$.

The inductor current is

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant is $\tau=\frac{L}{R_{\mathrm{t}}}$
and the initial condition, $i(0)$, is the inductor current at time $t=0$.

ELEMENT	TIME DOMAIN	FREQUENCY DOMAIN
Capacitor	$C \underset{\sigma_{-}^{-}}{\stackrel{v}{v}(t) \downarrow} \stackrel{+}{+} \quad v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau$	$\frac{1}{j \omega C} \underset{=}{\mathbf{I}(\omega) \downarrow} \stackrel{+}{\mathbf{V}(\omega)} \quad \mathbf{V}(\omega)=\frac{1}{j \omega C} \mathbf{I}(\omega)$
Inductor	$i(t) \downarrow\left\{\begin{array}{l} \\ + \\ v(t) \quad v(t)=L \frac{d}{d t} i(t) \\ - \end{array}\right.$	$j(\omega) \downarrow\left\{\begin{array}{l} \mathbf{I}(\omega) \\ + \\ \mathbf{V}(\omega) \quad \mathbf{V}(\omega)=j \omega L \mathbf{I}(\omega) \\ - \end{array}\right.$

Complex Numbers

Consider

$$
A \angle \theta=a+j b
$$

where $A \angle \theta$ is the complex number in polar form and $a+j b$ is the complex number in rectangular form. The conversion from polar form to rectangular form and vice versa is described by

$$
\begin{gathered}
a=\text { the real part of } A \angle \theta=A \cos (\theta) \\
b=\text { the imaginary part of } A \angle \theta=A \sin (\theta) \\
A=\text { the magnitude of } a+j b=\sqrt{a^{2}+b^{2}} \\
\theta=\text { the angle of } a+j b=\left\{\begin{array}{c}
\tan ^{-1}\left(\frac{b}{a}\right) \text { when } a>0 \\
180^{\circ}-\tan ^{-1}\left(\frac{b}{-a}\right) \text { when } a<0
\end{array}\right.
\end{gathered}
$$

