## Examples

**1.** This circuit has three inputs:  $v_1$ ,  $v_2$  and  $v_3$ . The output of the circuit is  $v_0$ . The output is related to the inputs by

$$v_0 = a v_1 + b v_2 + c v_3$$

where *a*, *b* and *c* are constants.

Determine the values of *a*, *b* and *c*.



**2.** This circuit has two inputs:  $v_1$  and  $v_2$ . The output of the circuit is  $v_0$ . The output is related to the inputs by

$$v_{0} = a v_{1} + b v_{2}$$

where a and b are constants.

Determine the values of *a* and *b*.



## **Solutions**

**1.** Use units of V, mA and  $k\Omega$ .

$$v_{0} = -\left[\left(\frac{120}{40}\right)\left(-\frac{20}{20}\right)v_{1} + \left(\frac{120}{120}\right)\left(\frac{20}{20+20}\right)v_{2} + \left(\frac{120}{30}\right)\left(1+\frac{20}{20}\right)v_{3}\right] = 3v_{1} - 0.5v_{2} - 8v_{3}$$
  
$$a = 3, \ b = -0.5 \text{ and } c = -8$$

so

$$a = 3, b = -0.5 \text{ and } c = -8$$

2.



Label the node voltages as shown. Use units of V, mA and  $k\Omega$ .

$$v_3 = v_1$$
 and  $v_4 = -v_2$ 

Write a node equation

 $\frac{v_5 - v_3}{40} + \frac{v_5 - v_4}{20} = 0$ 

Solving for  $v_5$ 

$$v_{5} = \frac{1}{3} \left( v_{3} + 2v_{2} \right) = \frac{1}{3} v_{1} - \frac{2}{3} v_{2}$$
  
so  
$$a = -\frac{1}{3} \text{ and } b = -\frac{2}{3}$$