## Examples

1. This circuit has three inputs: $v_{1}, v_{2}$ and $v_{3}$. The output of the circuit is $v_{0}$. The output is related to the inputs by

$$
v_{0}=a v_{1}+b v_{2}+c v_{3}
$$

where $a, b$ and $c$ are constants.

Determine the values of $a, b$ and $c$.

2. This circuit has two inputs: $v_{1}$ and $v_{2}$. The output of the circuit is $v_{0}$. The output is related to the inputs by

$$
v_{0}=a v_{1}+b v_{2}
$$

where $a$ and $b$ are constants.
Determine the values of $a$ and $b$.


## Solutions

1. Use units of V , mA and $\mathrm{k} \Omega$.

$$
v_{\mathrm{o}}=-\left[\left(\frac{120}{40}\right)\left(-\frac{20}{20}\right) v_{1}+\left(\frac{120}{120}\right)\left(\frac{20}{20+20}\right) v_{2}+\left(\frac{120}{30}\right)\left(1+\frac{20}{20}\right) v_{3}\right]=3 v_{1}-0.5 v_{2}-8 v_{3}
$$

so

$$
a=3, b=-0.5 \text { and } c=-8
$$

2. 



Label the node voltages as shown. Use units of V , mA and $\mathrm{k} \Omega$.

$$
v_{3}=v_{1} \text { and } v_{4}=-v_{2}
$$

Write a node equation

$$
\frac{v_{5}-v_{3}}{40}+\frac{v_{5}-v_{4}}{20}=0
$$

Solving for $v_{5}$

$$
\begin{aligned}
& \qquad v_{5}=\frac{1}{3}\left(v_{3}+2 v_{2}\right)=\frac{1}{3} v_{1}-\frac{2}{3} v_{2} \\
& \text { so } \\
& \qquad a=-\frac{1}{3} \text { and } b=-\frac{2}{3}
\end{aligned}
$$

