

The inputs to this circuit is the voltage source voltages, v_{a} and v_{b}. The output is the voltage, v_{o}, across R_{L}.

One of the voltage sources causes $v_{2}=v_{\mathrm{b}}$. The op amp is ideal so $v_{1}=v_{2}$. Consequently,

$$
v_{1}=v_{2}=v_{\mathrm{b}}
$$

Apply KCL at the node connected to the inverting input of the op amp to get

$$
\begin{aligned}
\frac{v_{\mathrm{a}}-v_{1}}{R_{\mathrm{i}}}=i_{1}+\frac{v_{1}-v_{\mathrm{o}}}{R_{\mathrm{f}}} \Rightarrow \frac{v_{\mathrm{a}}-v_{\mathrm{b}}}{R_{\mathrm{i}}}=\frac{v_{\mathrm{b}}-v_{\mathrm{o}}}{R_{\mathrm{f}}} & \Rightarrow R_{\mathrm{f}}\left(v_{\mathrm{a}}-v_{\mathrm{b}}\right)=R_{\mathrm{i}}\left(v_{\mathrm{b}}-v_{\mathrm{o}}\right) \\
& \Rightarrow v_{\mathrm{o}}=\left(1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}\right) v_{\mathrm{b}}-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} v_{\mathrm{a}}=5 v_{\mathrm{b}}-4 v_{\mathrm{a}}
\end{aligned}
$$

(Alternately, use superposition. When $v_{\mathrm{b}}=0$, the circuit is an inverting amplifier and $v_{\mathrm{o}}=-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} v_{\mathrm{a}}$. When $v_{\mathrm{a}}=0$, the circuit is an noninverting amplifier and $v_{\mathrm{o}}=\left(1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}\right) v_{\mathrm{b}}$. Then superposition gives $\left.v_{\mathrm{o}}=\left(1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}\right) v_{\mathrm{b}}-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} v_{\mathrm{a}}.\right)$

Next, consider the equation of a straight line.

$$
y=m x+b
$$

This equation is similar to

$$
v_{\mathrm{o}}=\left(1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}\right) v_{\mathrm{b}}-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} v_{\mathrm{a}}
$$

We can match these equations in either of the following ways:

- Let $y=v_{\mathrm{o}}$ and $x=v_{\mathrm{b}}$. Then $m=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}$ and $b=-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} v_{\mathrm{a}}=(1-m) v_{\mathrm{a}}$.
- Let $y=v_{\mathrm{o}}$ and $x=v_{\mathrm{a}}$. Then $m=-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}$ and $b=\left(1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}\right) v_{\mathrm{b}}=(1-m) v_{\mathrm{b}}$.

Notice that in the first case the slope is greater than 1 when we choose $x=v_{\mathrm{b}}$ and negative when we choose $x=v_{\mathrm{a}}$.

Summary: Suppose we need to design a circuit so that the plot of the output versus the input is a given straight line. This circuit may, or may not, be able to do the job. It depends on the slope of the given line. Here’s the design procedure:

1. Determine the slope, m, and intercept, b, of the straight line.
2. When $m>1$,
a. The input to circuit is v_{b}.
b. Choose values of R_{i} and R_{f} so that $m=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}$.
c. Let $v_{\mathrm{a}}=\frac{b}{(1-m)}$.
3. When $m \leq 0$
a. The input to the circuit is v_{a}.
b. Choose values of R_{i} and R_{f} so that $m=-\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}$.
c. Let $v_{\mathrm{b}}=\frac{b}{(1-m)}$.
4. When $0<m \leq 1$ we'll need to find another circuit.

Example

Design a circuit having one input, v_{s}, and one output, v_{o}. The output is required to be related to the input by the equation

$$
v_{\mathrm{o}}=10 v_{\mathrm{s}}+18
$$

Solution:

The slope is $m=10>1$ so we can use this circuit. Let $v_{\mathrm{s}}=v_{\mathrm{b}}$. Next

$$
10=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}} \Rightarrow \frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}=9
$$

As a rule of thumb, we try to use resistances between a few $\mathrm{k} \Omega$ and a few $\mathrm{M} \Omega$ in op amp circuits. Let's pick $R_{\mathrm{i}}=20 \mathrm{k} \Omega$ and $R_{\mathrm{f}}=180 \mathrm{k} \Omega$. Finally,

$$
v_{\mathrm{a}}=\frac{b}{(1-m)}=\frac{18}{(1-10)}=-2 \mathrm{~V}
$$

Here's the circuit:

