

The inputs to this circuit is the voltage source voltages, v_a and v_b . The output is the voltage, v_o , across R_L .

One of the voltage sources causes $v_2 = v_b$. The op amp is ideal so $v_1 = v_2$. Consequently,

$$v_1 = v_2 = v_b$$

Apply KCL at the node connected to the inverting input of the op amp to get

$$\frac{v_{a} - v_{1}}{R_{i}} = i_{1} + \frac{v_{1} - v_{o}}{R_{f}} \implies \frac{v_{a} - v_{b}}{R_{i}} = \frac{v_{b} - v_{o}}{R_{f}} \implies R_{f} \left(v_{a} - v_{b} \right) = R_{i} \left(v_{b} - v_{o} \right)$$
$$\implies v_{o} = \left(1 + \frac{R_{f}}{R_{i}} \right) v_{b} - \frac{R_{f}}{R_{i}} v_{a} = 5 v_{b} - 4 v_{a}$$

(Alternately, use superposition. When $v_b = 0$, the circuit is an inverting amplifier and

$$v_{o} = -\frac{R_{f}}{R_{i}}v_{a}$$
. When $v_{a} = 0$, the circuit is an noninverting amplifier and $v_{o} = \left(1 + \frac{R_{f}}{R_{i}}\right)v_{b}$. Then superposition gives $v_{o} = \left(1 + \frac{R_{f}}{R_{i}}\right)v_{b} - \frac{R_{f}}{R_{i}}v_{a}$.)

Next, consider the equation of a straight line.

$$y = mx + b$$

This equation is similar to

$$v_{\rm o} = \left(1 + \frac{R_{\rm f}}{R_{\rm i}}\right) v_{\rm b} - \frac{R_{\rm f}}{R_{\rm i}} v_{\rm a}$$

We can match these equations in either of the following ways:

• Let
$$y = v_0$$
 and $x = v_b$. Then $m = 1 + \frac{R_f}{R_i}$ and $b = -\frac{R_f}{R_i} v_a = (1 - m) v_a$.

• Let
$$y = v_o$$
 and $x = v_a$. Then $m = -\frac{R_f}{R_i}$ and $b = \left(1 + \frac{R_f}{R_i}\right)v_b = (1 - m)v_b$.

Notice that in the first case the slope is greater than 1 when we choose $x = v_b$ and negative when we choose $x = v_a$.

Summary: Suppose we need to design a circuit so that the plot of the output versus the input is a given straight line. This circuit may, or may not, be able to do the job. It depends on the slope of the given line. Here's the design procedure:

- 1. Determine the slope, *m*, and intercept, *b*, of the straight line.
- 2. When m > 1,
 - a. The input to circuit is $v_{\rm b}$.
 - b. Choose values of R_i and R_f so that $m = 1 + \frac{R_f}{R_i}$.

c. Let
$$v_{a} = \frac{b}{(1-m)}$$
.

- 3. When $m \le 0$
 - a. The input to the circuit is v_a .
 - b. Choose values of R_i and R_f so that $m = -\frac{R_f}{R_i}$.

c. Let
$$v_{b} = \frac{b}{(1-m)}$$

4. When $0 < m \le 1$ we'll need to find another circuit.

Example

Design a circuit having one input, v_s , and one output, v_o . The output is required to be related to the input by the equation

$$v_0 = 10v_s + 18$$

Solution:

The slope is m = 10 > 1 so we can use this circuit. Let $v_s = v_b$. Next

$$10 = 1 + \frac{R_{\rm f}}{R_{\rm i}} \implies \frac{R_{\rm f}}{R_{\rm i}} = 9$$

As a rule of thumb, we try to use resistances between a few k Ω and a few M Ω in op amp circuits. Let's pick $R_i = 20 \text{ k}\Omega$ and $R_f = 180 \text{ k}\Omega$. Finally,

$$v_{a} = \frac{b}{(1-m)} = \frac{18}{(1-10)} = -2 \text{ V}$$

Here's the circuit:

