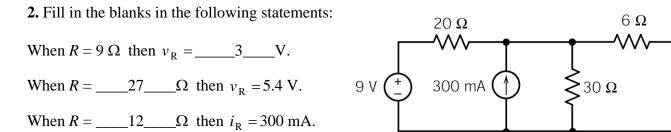
## **Another Sample ES 250 Second Midterm Exam**

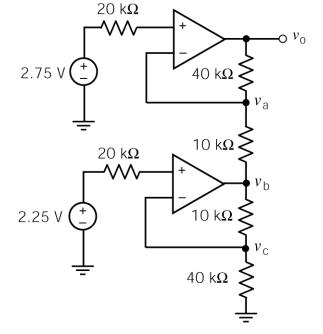
**1.** This circuit has two inputs,  $v_s$  and  $i_s$ , and one output  $i_o$ . The output is related to the inputs by the equation

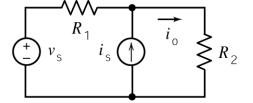
$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$


Given the following two facts:

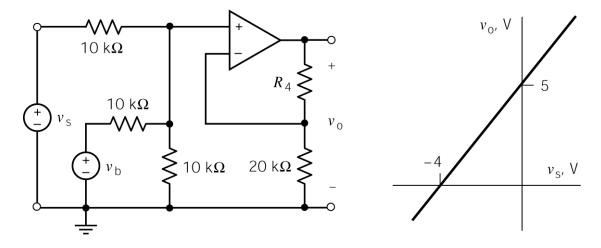
The output is  $i_0 = 0.45$  A when the inputs are  $i_s = 0.25$  A and  $v_s = 15$  V.

and


The output is  $i_0 = 0.30$  A when the inputs are  $i_s = 0.50$  A and  $v_s = 0$  V.


The values of the constants *a* and *b* are  $a = \__0.6\__$  and  $b = \__0.02\__A/V$ . The values of the resistances are  $R_1 = \__30\__\Omega$  and  $R_2 = \__20\__\Omega$ .




**3.** Determine the values of the node voltages  $v_a$ ,  $v_b$ ,  $v_c$  and  $v_o$ :

$$v_{a} = \__2.75\__V, v_{b} = \__2.8125\_V,$$
  
 $v_{c} = \__2.25\__V,$  and  $v_{o} = \__2.50\__V.$ 

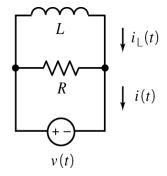


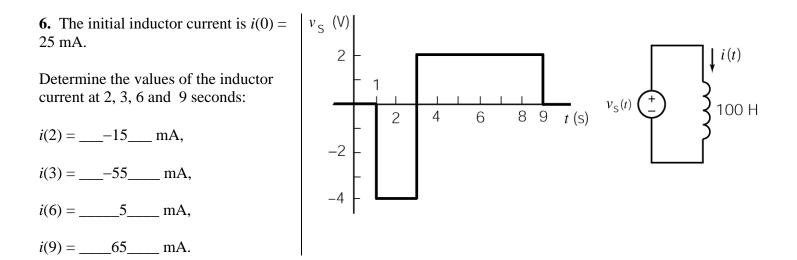


**>** R



The input to this circuit is the voltage,  $v_s$ . The output is the voltage  $v_o$ . The voltage  $v_b$  is used to adjust the relationship between the input and output. Determine values of  $R_4$  and  $v_b$  that cause the circuit input and output have the relationship specified by the graph

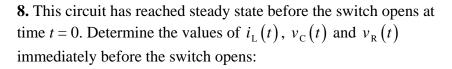

$$v_{\rm b} = \__4 \__V$$
 and  $R_4 = \__55 \__k\Omega$ .


5. The input to this circuit is the voltage:  $v(t) = 4e^{-20t}$  V for t > 0

The output is the current:  $i(t) = -1.2 e^{-20t} - 1.5$  A for t > 0

The initial condition is  $i_{\rm L}(0) = -3.5$  A. Determine the values of the resistance and inductance:

 $R = \__5\__\Omega$  and  $L = \__0.1\__H$ .








and

a. When C = 10 F then  $C_{eq} = \__25\__F$ . b. When  $C = \__3.2\__F$  then  $C_{eq} = 8$  F.



$$i_{\rm L}(0-)=$$
\_\_\_1\_\_\_A,  $v_{\rm C}(0-)=$ \_\_\_20\_\_\_V  
 $v_{\rm R}(0-)=$ \_\_\_5\_\_V

Determine the value of  $v_{\rm R}(t)$  immediately after the switch opens:

 $v_{\rm R}(0+) = -4 V$ 

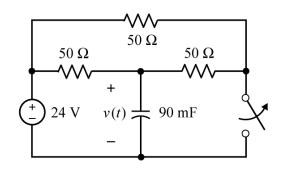
**9.** After time t = 0, a given circuit is represented by this circuit diagram.

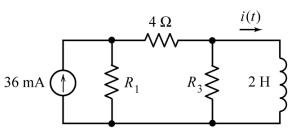
a. Suppose that the inductor current is

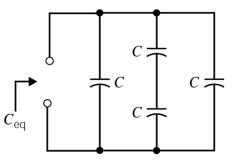
 $i(t) = 21.6 + 28.4 e^{-4t}$  mA for  $t \ge 0$ 

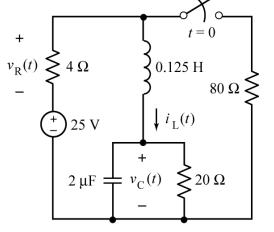
Determine the values of  $R_1$  and  $R_3$ :  $R_1 = \__6 \__\Omega$  and  $R_3 = \__40 \__\Omega$ .

**b.** Suppose instead that  $R_1 = 16 \Omega$ ,  $R_3 = 20 \Omega$ , the initial condition is i(0) = 10 mA, and the inductor current is  $i(t) = A - Be^{-at}$  for  $t \ge 0$ . Determine the values of the constants *A*, *B*, and *a*:


 $A = \__28.8$  mA,  $B = \__-18.8$  mA and  $a = \__5$  s.


**10.** a) Determine the time constant,  $\tau$ , and the steady state capacitor voltage,  $v(\infty)$ , when the switch is **open**:


$$\tau = \underline{\qquad} 3 \underline{\qquad} s \text{ and } v(\infty) = \underline{\qquad} 24 \underline{\qquad} V$$


**b**) Determine the time constant,  $\tau$ , and the steady state capacitor voltage,  $v(\infty)$ , when the switch is **closed**:

$$\tau = \_2.25\_s$$
 and  $v(\infty) = \_12\_V$ 







