Another Sample ES 250 Second Midterm Exam

1. This circuit has two inputs, v_{s} and i_{s}, and one output i_{0}. The output is related to the inputs by the equation

$$
i_{\mathrm{o}}=a i_{\mathrm{s}}+b v_{\mathrm{s}}
$$

Given the following two facts:

The output is $i_{0}=0.45 \mathrm{~A}$ when the inputs are $i_{\mathrm{s}}=0.25 \mathrm{~A}$ and $v_{\mathrm{s}}=15 \mathrm{~V}$.
and

$$
\text { The output is } i_{0}=0.30 \mathrm{~A} \text { when the inputs are } i_{\mathrm{s}}=0.50 \mathrm{~A} \text { and } v_{\mathrm{s}}=0 \mathrm{~V} \text {. }
$$

The values of the constants a and b are $\quad a=$ \qquad and $\quad b=$ \qquad A/V.

The values of the resistances are $R_{1}=$ \qquad Ω and $R_{2}=$ \qquad Ω.
2. Fill in the blanks in the following statements:

When $R=9 \Omega$ then $v_{\mathrm{R}}=$ \qquad V.

When $R=$ \qquad Ω then $v_{\mathrm{R}}=5.4 \mathrm{~V}$.

When $R=$ \qquad Ω then $i_{\mathrm{R}}=300 \mathrm{~mA}$.

3. Determine the values of the node voltages $v_{\mathrm{a}}, v_{\mathrm{b}}, v_{\mathrm{c}}$ and v_{o} :

$$
\begin{gathered}
v_{\mathrm{a}}=_\mathrm{V}, v_{\mathrm{b}}=_\mathrm{V}, \\
v_{\mathrm{c}}= \\
\mathrm{V}, \text { and } v_{\mathrm{o}}=\ldots \mathrm{V}
\end{gathered}
$$

4.

The input to this circuit is the voltage, v_{s}. The output is the voltage v_{o}. The voltage v_{b} is used to adjust the relationship between the input and output. Determine values of R_{4} and v_{b} that cause the circuit input and output have the relationship specified by the graph

$$
v_{\mathrm{b}}=
$$

\qquad V and $R_{4}=$ \qquad $\mathrm{k} \Omega$.
5. The input to this circuit is the voltage: $v(t)=4 e^{-20 t} \mathrm{~V}$ for $t>0$ The output is the current: $i(t)=-1.2 e^{-20 t}-1.5 \mathrm{~A}$ for $t>0$

The initial condition is $i_{\mathrm{L}}(0)=-3.5 \mathrm{~A}$. Determine the values of the resistance and inductance:

$$
R=
$$

\qquad Ω and $L=$ \qquad H.
6. The initial inductor current is $i(0)=$ 25 mA .

Determine the values of the inductor current at $2,3,6$ and 9 seconds:
$i(2)=$ \qquad mA ,
$i(3)=$ \qquad mA ,
$i(6)=$ \qquad mA ,
$i(9)=$ \qquad mA .
7.
a. When $C=10 \mathrm{~F}$ then $C_{\text {eq }}=$ \qquad F.
b. When $C=$ \qquad F then $C_{\text {eq }}=8 \mathrm{~F}$.

8. This circuit has reached steady state before the switch opens at time $t=0$. Determine the values of $i_{\mathrm{L}}(t), v_{\mathrm{C}}(t)$ and $v_{\mathrm{R}}(t)$ immediately before the switch opens:

$$
i_{\mathrm{L}}(0-)=
$$

\qquad A, $v_{\mathrm{C}}(0-)=$ \qquad V
and

$$
v_{\mathrm{R}}(0-)=
$$

\qquad V

Determine the value of $v_{\mathrm{R}}(t)$ immediately after the switch opens:

$$
v_{\mathrm{R}}(0+)=
$$

\qquad V

9. After time $t=0$, a given circuit is represented by this circuit diagram.
a. Suppose that the inductor current is

$$
i(t)=21.6+28.4 e^{-4 t} \mathrm{~mA} \text { for } t \geq 0
$$

Determine the values of R_{1} and R_{3} : $\quad R_{1}=$ \qquad Ω and $R_{3}=$ \qquad Ω.
b. Suppose instead that $R_{1}=16 \Omega, R_{3}=20 \Omega$, the initial condition is $i(0)=10 \mathrm{~mA}$, and the inductor current is $i(t)=A-B e^{-a t}$ for $t \geq 0$. Determine the values of the constants A, B, and a :
$A=$ \qquad $\mathrm{mA}, \quad B=$ \qquad mA and $a=$ \qquad s.
10. a) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is open: $\tau=$ \qquad s and $v(\infty)=$ \qquad V
b) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is closed:

$\tau=$ \qquad s and $v(\infty)=$ \qquad V

