Another Sample ES 250 Second Midterm Exam

1. This circuit has two inputs, v_s and i_s , and one output i_o . The output is related to the inputs by the equation

$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$

Given the following two facts:

The output is $i_0 = 0.45$ A when the inputs are $i_s = 0.25$ A and $v_s = 15$ V.

and

The output is $i_0 = 0.30$ A when the inputs are $i_s = 0.50$ A and $v_s = 0$ V.

The values of the constants a and b are $a = _$ and $b = _$ A/V.

The values of the resistances are $R_1 = _ \ \Omega$ and $R_2 = _ \ \Omega$.

3. Determine the values of the node voltages v_a , v_b , v_c and v_o :

 $v_{a} =$ _____ V, $v_{b} =$ _____ V, $v_{c} =$ _____ V, and $v_{o} =$ _____ V.

The input to this circuit is the voltage, v_s . The output is the voltage v_o . The voltage v_b is used to adjust the relationship between the input and output. Determine values of R_4 and v_b that cause the circuit input and output have the relationship specified by the graph

$$v_{\rm b} =$$
 _____ V and $R_4 =$ _____ k Ω .

5. The input to this circuit is the voltage: $v(t) = 4e^{-20t}$ V for t > 0

The output is the current: $i(t) = -1.2 e^{-20t} - 1.5$ A for t > 0

The initial condition is $i_{\rm L}(0) = -3.5$ A. Determine the values of the resistance and inductance:

 $R = _ \Omega$ and $L = _ H$.

8. This circuit has reached steady state before the switch opens at time t = 0. Determine the values of $i_{\rm L}(t)$, $v_{\rm C}(t)$ and $v_{\rm R}(t)$ immediately before the switch opens:

$$i_{\rm L}(0-)=$$
_____A, $v_{\rm C}(0-)=$ ____V
 $v_{\rm R}(0-)=$ ____V

and

Determine the value of $v_{\rm R}(t)$ immediately after the switch opens:

 $v_{\rm R}(0+) = V$

9. After time t = 0, a given circuit is represented by this circuit diagram.

a. Suppose that the inductor current is

$$i(t) = 21.6 + 28.4 e^{-4t}$$
 mA for $t \ge 0$

b. Suppose instead that $R_1 = 16 \Omega$, $R_3 = 20 \Omega$, the initial condition is i(0) = 10 mA, and the inductor current is $i(t) = A - Be^{-at}$ for $t \ge 0$. Determine the values of the constants *A*, *B*, and *a*:

 $A = _$ mA, $B = _$ mA and $a = _$ s.

10. a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

 $\tau =$ _____ s and $v(\infty) =$ _____ V

b) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **closed**:

 $\tau =$ _____ s and $v(\infty) =$ _____ V

 $v_{\rm R}(t) \lessapprox 4 \,\Omega$

25 V

 $2 \mu F$

t = 0

 80Ω

0.125 H

 $i_{\rm L}(t)$