Element Equations

Capacitor:

$$
\begin{aligned}
& i(t) \downarrow 9+\quad v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau \\
& c=\begin{array}{l}
v(t) \\
- \\
i(t)=C \frac{d v(t)}{d t}, ~
\end{array}
\end{aligned}
$$

First-Order Circuits

First-Order Circuit containing a Capacitor
 First-Order Circuit containing an Inductor

Replace the circuit consisting of op amps, resistors, and sources by its Thévenin equivalent circuit:

The capacitor voltage is:

$$
v(t)=V_{\text {oc }}+\left(v(0)-V_{\text {oc }}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=R_{\mathrm{t}} C
$$

and the initial condition, $v(0)$, is the capacitor voltage at time $t=0$.

Replace the circuit consisting of op amps, resistors, and sources by its Norton equivalent circuit:

The inductor current is

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=\frac{L}{R_{\mathrm{t}}}
$$

and the initial condition, $i(0)$, is the inductor current at time $t=0$.

