ES 250 2nd Midterm Exam - Fall 2013

Name \qquad k5 \qquad

1. The switch in this circuit closes at time $t=0$. Let $i(0)$ denote the inductor current when the switch is open and the circuit is at steady state. Similarly, let $i(\infty)$ denote the steady state inductor current when the switch is closed.

Determine the values of $i(0)$ and $i(\infty)$:

$$
i(0)=_1.875 _\mathrm{A} \text { and } i(\infty)=_7.5 _ \text {A } \text {. }
$$

2. The input to this circuit is the voltage v_{s}. The output is the voltage v_{o}. The output is related to the input by the equation $v_{\mathrm{o}}=m v_{\mathrm{s}}+b$ where m and b are constants. The values of m and b are:

$$
m=\ldots-2 _\mathrm{V} / \mathrm{V} \text { and } b=\ldots 4.5 _\mathrm{V} \text {. }
$$

3. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, R_{t}, and of the open-circuit voltage, $V_{\text {oc }}$.

$$
R_{\mathrm{t}}=
$$

\qquad 8 \qquad Ω and $V_{\text {oc }}=$ \qquad -32 \qquad V
4. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, R_{t}, and of the open-circuit voltage, $V_{\text {oc }}$.

$$
R_{\mathrm{t}}=_45 _\Omega \text { and } V_{\mathrm{oc}}=_56 _\mathrm{V}
$$

5. Given that $0 \leq R \leq \infty$ in this circuit, and given these two observations:

$$
\begin{aligned}
& \text { When } R=0 \text { then } i=0.25 \mathrm{~A} \text {. } \\
& \text { When } R=\infty \text { then } v=15 \mathrm{~V} \text {. }
\end{aligned}
$$

Fill in the blanks in the following statements:
a) When $R=$ \qquad 30 \qquad Ω then $v=5 \mathrm{~V}$.
b) When $R=$ \qquad 15 \qquad Ω then $i=0.20 \mathrm{~A}$.
6.

The values of the node voltages v_{1}, v_{2} and v_{0}, are $v_{1}=875 \mathrm{mV}, v_{2}=350 \mathrm{mV}$ and $v_{\mathrm{o}}=-600 \mathrm{mV}$.
Determine the value of the resistances R_{1}, R_{2} and R_{3} :

$$
R_{1}=_\quad 72 _\mathrm{k} \Omega, \quad R_{2}=_14 _\ldots \quad \mathrm{k} \Omega \text { and } R_{3}=_42 _\mathrm{k} \Omega .
$$

7 a) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is open:
$\tau=$ \qquad 0.8 \qquad s and $v(\infty)=$ \qquad 8 \qquad V
b) Determine the time constant, τ, and the steady state capacitor voltage, $v(\infty)$, when the switch is closed:

$\tau=$ \qquad 0.5 \qquad s and $v(\infty)=$ \qquad 20 \qquad V
8.

The equivalent circuit on the right is obtained from the original circuit on the left using source transformations and equivalent resistances. (The lower case letters a and b identify the nodes of the capacitor in both the original and equivalent circuits.) Determine the values of $R_{\mathrm{a}}, I_{\mathrm{a}}, R_{\mathrm{b}}$ and V_{b} in the equivalent circuit:

$$
R_{\mathrm{a}},=_12 _\Omega, \quad I_{\mathrm{a}}=_-6 _\mathrm{A}, \quad R_{\mathrm{b}}=_35 _\Omega \text { and } V_{\mathrm{b}}=_66 _\mathrm{V} .
$$

9. This circuit is at steady state before the switch closes.

The inductor current can be represented as

$$
i(t)=A+B e^{-a t} \text { Amps for } t>0
$$

Determine the values of the real constants A, B and a :

$A=$ \qquad 4.375 \qquad Amps, $B=$ \qquad 2.625 \qquad Amps and $a=$ \qquad 5 1/s.
10. The input to this circuit is the voltage: $v(t)=20+4 e^{-7 t} \mathrm{~V}$ for $t>0$ The output is the current: $i(t)=2.5-7.2 e^{-7 t}$ A for $t>0$

Determine the values of the resistance and capacitance:

$$
R=_\quad 8 _\Omega \text { and } C=_275 \quad \mathbf{m F} .
$$

11. Here are 4 separate dc circuits. Because they are dc circuits, the capacitors in these circuits act like open circuits and the inductors act like short circuits. Determine the values of i_{1}, v_{2}, v_{3} and i_{4}.

Element Equations

$$
\text { Capacitor: } \begin{aligned}
& i(t) \downarrow \\
& C \\
& \prod_{-}^{v(t)} \\
&+\quad v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau \\
&- i(t)=C \frac{d v(t)}{d t}
\end{aligned}
$$

First-Order Circuits

FIRST-ORDER CIRCUIT CONTAINING A
CAPACITOR

Replace the circuit consisting of op amps, resistors, and sources by its Thévenin equivalent circuit:

The capacitor voltage is:

$$
v(t)=V_{\mathrm{oc}}+\left(v(0)-V_{\mathrm{oc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=R_{\mathrm{t}} C
$$

and the initial condition, $v(0)$, is the capacitor voltage at time $t=0$.

First-Order Circuit containing an Inductor

Replace the circuit consisting of op amps, resistors, and sources by its Norton equivalent circuit:

The inductor current is

$$
i(t)=I_{\mathrm{sc}}+\left(i(0)-I_{\mathrm{sc}}\right) e^{-\frac{t}{\tau}}
$$

where the time constant, τ, is

$$
\tau=\frac{L}{R_{\mathrm{t}}}
$$

and the initial condition, $i(0)$, is the inductor current at time $t=0$.

