ES 250 2nd Midterm Exam - Fall 2013

Name k5

Student #

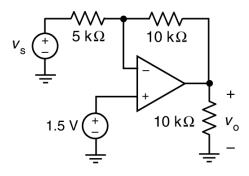
1. The switch in this circuit closes at time t = 0. Let i(0) denote the inductor current when the switch is open and the circuit is at steady state. Similarly, let $i(\infty)$ denote the steady state inductor current when the switch is closed.

Determine the values of i(0) and $i(\infty)$:

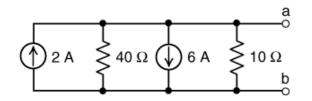
$$i(0) = ___1.875 __A \text{ and } i(\infty) = __7.5 __A.$$

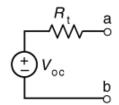
2. The input to this circuit is the voltage v_s . The output is the voltage v_o . The output is related to the input by the equation $v_o = m v_s + b$ where m and b are constants. The values of m and b are:

$$m = __-2_V/V$$
 and $b = __4.5_V.$



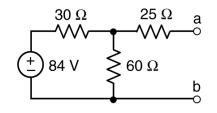
3. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, $R_{\rm t}$, and of the open-circuit voltage, $V_{\rm oc}$.

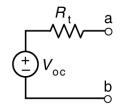




$$R_{\rm t} = \underline{} 8 \underline{} \Omega$$
 and $V_{\rm oc} = \underline{} -32 \underline{} V$

4. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, $R_{\rm t}$, and of the open-circuit voltage, $V_{\rm oc}$.





$$R_{\rm t} = \underline{\qquad} 45 \underline{\qquad} \Omega$$
 and $V_{\rm oc} = \underline{\qquad} 56 \underline{\qquad} V$

5. Given that $0 \le R \le \infty$ in this circuit, and given these two observations:

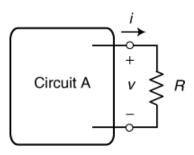
When
$$R = 0$$
 then $i = 0.25$ A.

When
$$R = \infty$$
 then $v = 15$ V.

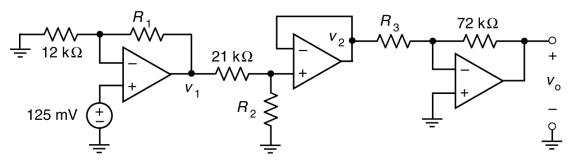
Fill in the blanks in the following statements:

a) When
$$R = 30$$
 Ω then $v = 5$ V.

b) When
$$R = ____15___\Omega$$
 then $i = 0.20$ A.



6.



The values of the node voltages v_1 , v_2 and v_0 , are $v_1 = 875$ mV, $v_2 = 350$ mV and $v_0 = -600$ mV. Determine the value of the resistances R_1 , R_2 and R_3 :

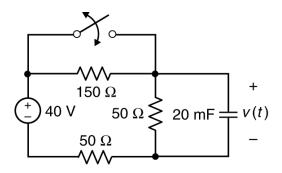
$$R_1 = \underline{\hspace{1cm}} 72 \underline{\hspace{1cm}} k\Omega$$
, $R_2 = \underline{\hspace{1cm}} 14 \underline{\hspace{1cm}} k\Omega$ and $R_3 = \underline{\hspace{1cm}} 42 \underline{\hspace{1cm}} k\Omega$.

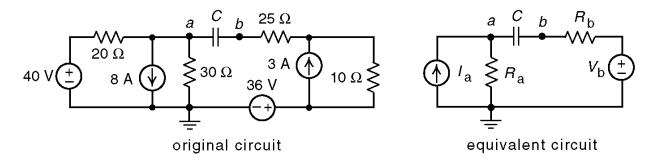
7 a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

$$\tau = 0.8$$
 s and $v(\infty) = 8$ V

b) Determine the time constant, τ , and the steady state capacitor voltage, $\nu(\infty)$, when the switch is **closed**:

$$\tau = _{_{_{_{_{_{}}}}}} 0.5 _{_{_{_{_{_{}}}}}} s$$
 and $v(\infty) = _{_{_{_{_{_{_{}}}}}}} 20 _{_{_{_{_{_{_{}}}}}}} V$





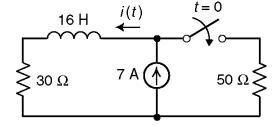
The equivalent circuit on the right is obtained from the original circuit on the left using source transformations and equivalent resistances. (The lower case letters a and b identify the nodes of the capacitor in both the original and equivalent circuits.) Determine the values of R_a , I_a , R_b and V_b in the equivalent circuit:

$$R_{\rm a}$$
, = ___12__ Ω , $I_{\rm a}$ = ___66__ ${\rm V}$.

9. This circuit is at steady state before the switch closes. The inductor current can be represented as

$$i(t) = A + Be^{-at}$$
 Amps for $t > 0$

Determine the values of the real constants A, B and a:



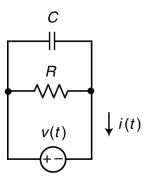
$$A = __4.375$$
__ Amps, $B = __2.625$ _ Amps and $a = __5$ _ 1/s.

10. The input to this circuit is the voltage: $v(t) = 20 + 4e^{-7t}$ V for t > 0

The output is the current: $i(t) = 2.5 - 7.2e^{-7t}$ A for t > 0

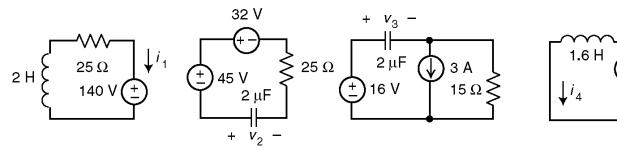
Determine the values of the resistance and capacitance:

$$R =$$
__8__ Ω and $C =$ __275___**mF**.



 20Ω

11. Here are 4 separate dc circuits. Because they are dc circuits, the capacitors in these circuits act like open circuits and the inductors act like short circuits. Determine the values of i_1 , v_2 , v_3 and i_4 .



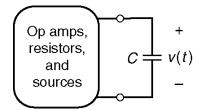
Element Equations

Capacitor:
$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$
$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$
$$i(t) = C \frac{dv(t)}{dt}$$

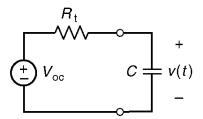
Inductor:
$$i(t) \downarrow \begin{cases} + & i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau \\ v(t) & v(t) = L \frac{di(t)}{dt} \end{cases}$$

First-Order Circuits

FIRST-ORDER CIRCUIT CONTAINING A CAPACITOR



Replace the circuit consisting of op amps, resistors, and sources by its Thévenin equivalent circuit:



The capacitor voltage is:

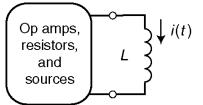
$$v(t) = V_{\text{oc}} + \left(v(0) - V_{\text{oc}}\right)e^{-\frac{t}{\tau}}$$

where the time constant, τ , is

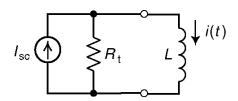
$$\tau = R_{t} C$$

and the initial condition, v(0), is the capacitor voltage at time t = 0.

FIRST-ORDER CIRCUIT CONTAINING AN INDUCTOR



Replace the circuit consisting of op amps, resistors, and sources by its Norton equivalent circuit:



The inductor current is

$$i(t) = I_{sc} + (i(0) - I_{sc})e^{-\frac{t}{\tau}}$$

where the time constant, τ , is

$$\tau = \frac{L}{R_{\star}}$$

and the initial condition, i(0), is the inductor current at time t = 0.