ES 250 2nd Midterm Exam - Fall 2013

Name k4

Student #

1. The switch in this circuit closes at time t = 0. Let i(0) denote the inductor current when the switch is open and the circuit is at steady state. Similarly, let $i(\infty)$ denote the steady state inductor current when the switch is closed.

Determine the values of i(0) and $i(\infty)$:

$$i(0) = ___1.25_A$$
 and $i(\infty) = __6.25_A$.

2. The input to this circuit is the voltage v_s . The output is the voltage v_o . The output is related to the input by the equation $v_o = m v_s + b$ where m and b are constants. The values of m and b are:

$$m = ___-4__V/V$$
 and $b = __7.5__V$.

2. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, $R_{\rm t}$, and of the open-circuit voltage, $V_{\rm oc}$.

$$R_{\rm t} = _{16} \Omega$$
 and $V_{\rm oc} = _{128} V$

4. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, $R_{\rm t}$, and of the open-circuit voltage, $V_{\rm oc}$.

$$R_{\rm t} = \underline{}37\underline{}\Omega$$
 and $V_{\rm oc} = \underline{}39\underline{}V$

5. Given that $0 \le R \le \infty$ in this circuit, and given these two observations:

When
$$R = 0$$
 then $i = 1.5$ A.

When
$$R = \infty$$
 then $v = 24$ V.

Fill in the blanks in the following statements:

a) When
$$R = 8 \Omega$$
 then $v = 8 V$.

b) When
$$R = \underline{} 24 \underline{} \Omega$$
 then $i = 0.6$ A.

6.

The values of the node voltages v_1 , v_2 and v_0 , are $v_1 = 875 \text{ mV}$, $v_2 = 350 \text{ mV}$ and $v_0 = -600 \text{ mV}$. Determine the value of the resistances R_1 , R_2 and R_3 :

$$R_1 = ____96__k\Omega$$
, $R_2 = ___32__k\Omega$ and $R_3 = ___35__k\Omega$.

7. a) Determine the time constant, τ , and the steady state capacitor voltage, $\nu(\infty)$, when the switch is **open**:

$$\tau = __280__m ms$$
 and $v(\infty) = __16__V$

b) Determine the time constant, τ , and the steady state capacitor voltage, $\nu(\infty)$, when the switch is **closed**:

$$\tau = _{175}$$
 ms and $v(\infty) = _{40}$ V

8.

The equivalent circuit on the right is obtained from the original circuit on the left using source transformations and equivalent resistances. (The lower case letters a and b identify the nodes of the capacitor in both the original and equivalent circuits.) Determine the values of R_a , I_a , R_b and V_b in the equivalent circuit:

$$R_{a}$$
, = ___16__ Ω , I_{a} = ___-3__A, R_{b} = ___24__ Ω and V_{b} = ___12__ V .

9. This circuit is at steady state before the switch closes. The inductor current can be represented as

$$i(t) = A + Be^{-at}$$
 Amps for $t > 0$

Determine the values of the real constants A, B and a:

$$A = ___1.75$$
 Amps, $B = ____5.25$ Amps and $a = ___32$ 1/s.

10. The input to this circuit is the voltage: $v(t) = 20 + 4e^{-7t}$ V for t > 0

The output is the current: $i(t) = 2 - 10.1e^{-7t}$ A for t > 0

Determine the values of the resistance and capacitance:

$$R = 10 \Omega$$
 and $C = 375 mF$.

11. Here are 4 separate dc circuits. Because they are dc circuits, the capacitors in these circuits act like open circuits and the inductors act like short circuits. Determine the values of i_1 , v_2 , v_3 and i_4 .

