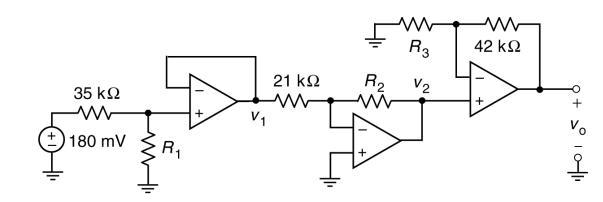
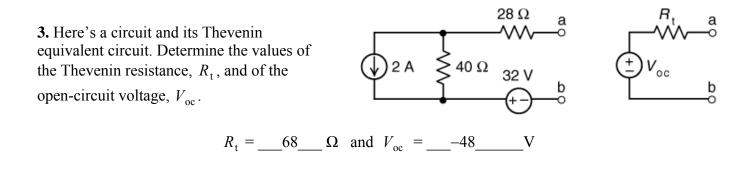

ES 250 2nd Midterm Exam - Fall 2013

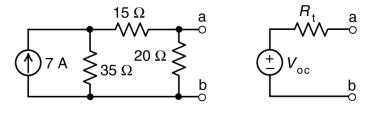

Name _____ k1____

1. The switch in this circuit closes at time t = 0. Let v(0) denote the capacitor voltage when the switch is open and the circuit is at steady state. Similarly, let $v(\infty)$ denote the steady state capacitor voltage when the switch is closed.

Determine the values of v(0) and $v(\infty)$:

$$v(0) = 4.5$$
 V and $v(\infty) = 12$ V.

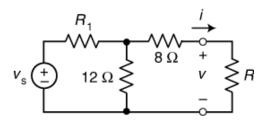



The values of the node voltages v_1 , v_2 and v_0 , are $v_1 = 80$ mV, $v_2 = -320$ mV and $v_0 = -960$ mV. Determine the value of the resistances R_1 , R_2 and R_3 :

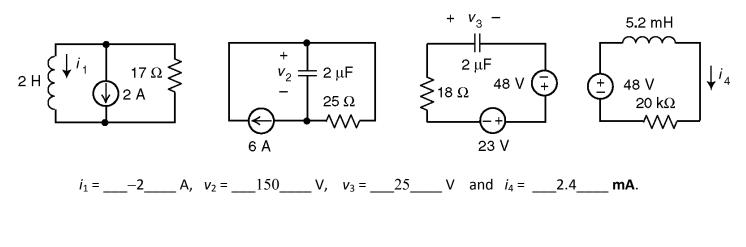
 $R_1 = __28__k\Omega, R_2 = __84__k\Omega \text{ and } R_3 = __21__k\Omega.$

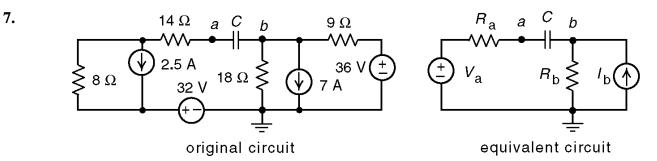
2.

4. Here's a circuit and its Thevenin equivalent circuit. Determine the values of the Thevenin resistance, R_t , and of the open-circuit voltage, V_{oc} .


$$R_{\rm t} = _14.29 _ \Omega$$
 and $V_{\rm oc} = _70 _ V$

5. Given that $0 \le R \le \infty$ in this circuit, and given these two observations:

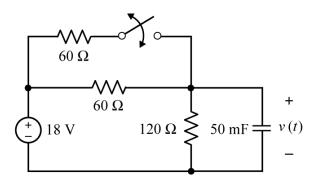

When
$$R = 0$$
 then $i = 3$ A.
When $R = \infty$ then $v = 36$ V.


Fill in the blanks in the following statements:

- a) When $R = 12 \quad \Omega$ then v = 18 V.
- b) When $R = \underline{24} \Omega$ then i = 1 A.

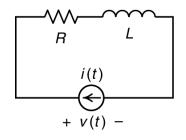
6. Here are 4 separate dc circuits. Because they are dc circuits, the capacitors in these circuits act like open circuits and the inductors act like short circuits. Determine the values of i_1 , v_2 , v_3 and i_4 .

The equivalent circuit on the right is obtained from the original circuit on the left using source transformations and equivalent resistances. (The lower case letters *a* and *b* identify the nodes of the capacitor in both the original and equivalent circuits.) Determine the values of R_a , V_a , R_b and I_b in the equivalent circuit:

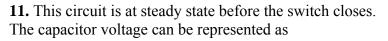

 $R_{a} = \underline{22} \Omega$, $V_{a} = \underline{12} V$, $R_{b} = \underline{6} \Omega$ and $I_{b} = \underline{-3} A$.

8. a) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **open**:

$$\tau = \underline{2}$$
 s and $v(\infty) = \underline{12}$ V

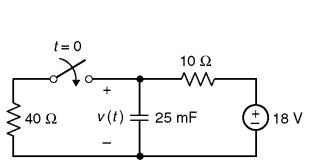

b) Determine the time constant, τ , and the steady state capacitor voltage, $v(\infty)$, when the switch is **closed**:

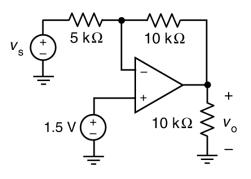
 $\tau = _1.2_$ s and $v(\infty) = _14.4_$ V


9. The input to this circuit is the current: $i(t) = 5 + 2e^{-7t}$ A for t > 0The output is the voltage: $v(t) = 100 - 30e^{-7t}$ V for t > 0Determine the values of the resistance and inductance:

 $R = _20_ \Omega$ and $L = _5_ H$.

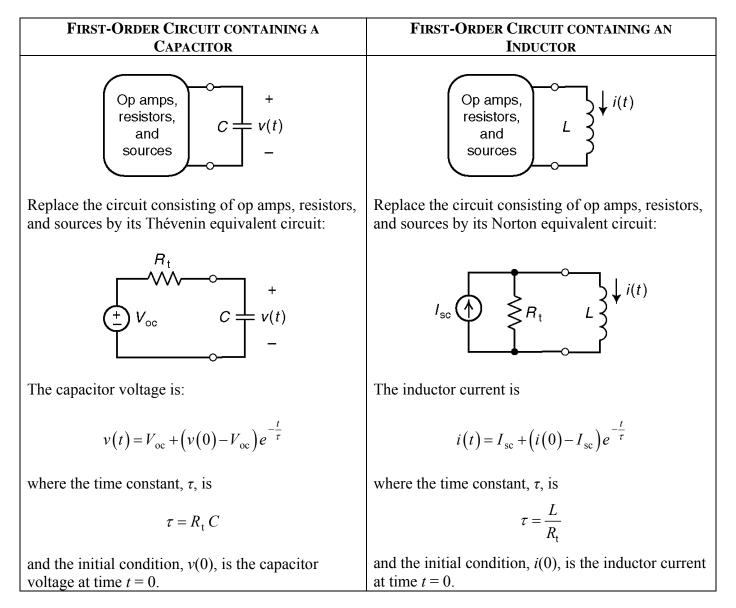
10. The input to this circuit is the voltage v_s . The output is the voltage v_o . The output is related to the input by the equation $v_o = m v_s + b$ where *m* and *b* are constants. The values of *m* and *b* are:


$$m = -2_V/V$$
 and $b = 4.5_V.$



$$v(t) = A + Be^{-at}$$
 V for $t > 0$

Determine the values of the real constants *A*, *B* and *a*:


 $A = __14.4$ V, $B = __3.6$ V and $a = __5$ 1/s.

Element Equations

First-Order Circuits

